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 Ockham's Razor and Bayesian Analysis
 The intuitive idea that simple explanations are usually better than

 complicated ones now gets quantitative support from statistical methods

 William H. Jefferys and James O. Berger

 The principle known as Ockham's ra? zor has high standing in the world
 of science, buttressed by its strong ap?
 peal to common sense. William of Ock
 ham, the 14th-century English philoso?
 pher, stated the principle thus: Pluralitas
 non est ponenda sine necessitate, which
 can be translated as: "Plurality must not
 be posited without necessity." It is not
 entirely certain what Ockham meant by
 this rather opaque saying, but later ver?
 sions of the principle, which have been
 traced to various authors other than

 Ockham, have a clear enough interpre?
 tation. The idea has been expressed as
 "Entities should not be multiplied

 without necessity" and "It is vain to do
 with more what can be done with
 less"; a modern rendering might be
 "An explanation of the facts should be
 no more complicated than necessary,"
 or "Among competing hypotheses, fa?
 vor the simplest one." Over the years
 Ockham's razor has proved to be an ef?
 fective device for trimming away un?
 profitable lines of inquiry, and scien?
 tists use it every day, even when they
 do not cite it explicitly. See Thorburn
 (1918) for a history of the principle.

 Ockham's razor is usually thought of
 as a heuristic principle?a rule of
 thumb that experience has shown to be
 a useful tool, but one without a firm
 theoretical or logical foundation. Under
 some circumstances, however, Ock?
 ham's razor can be regarded as a conse?
 quence of deeper principles. Specifical?
 ly, it has close connections to the
 Bayesian method of statistical analysis,
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 which interprets a probability as the de?
 gree of confidence or plausibility one is
 willing to invest in a proposition.

 Ockham's razor enjoins us to favor
 the simplest hypothesis that is consis?
 tent with the data, but determining

 which hypothesis is simplest is often no
 simple matter. Bayesian analysis can of?
 fer concrete help in judging the degree
 to which a simpler model is to be pre?
 ferred. Ironically, whereas Bayesian

 methods have been criticized for intro?

 ducing subjectivity into statistical analy?
 sis, the Bayesian approach can turn
 Ockham's razor into a less subjective
 and even "automatic" rule of inference.

 Galileo's Problem
 The connection between Bayesian
 statistics and Ockham's razor is implicit
 in the work of Harold Jeffreys of the

 University of Cambridge, whose book
 Theory of Probability, published in 1939,
 was an important landmark in the
 modern revival of Bayesian methods.
 The connection has since been made ex?

 plicit by a number of others: see Good
 (1968, 1977), Jaynes (1979), Smith and
 Spiegelhalter (1980), Gull (1988), Loredo
 (1989) and MacKay (1991).
 An example that Jeffreys discussed in

 1939 provides an illuminating intro?
 duction to the problems that can arise
 when Ockham's razor is put to the test
 as an implement of scientific methodol?
 ogy. Suppose you are collecting some
 data on the motion of falling bodies, as
 Galileo supposedly did in his legendary
 experiments at the Tower of Pisa. You
 drop a weight and record its position, s,
 at several moments, t, during the fall.
 The challenge then is to devise a mathe?
 matical law describing the motion.

 The law proposed by Galileo, and fa?
 miliar to students of physics, can be ex?
 pressed as a quadratic equation:

 s= a + ut + jgt2
 Here a, u and g are adjustable parame?
 ters, or in other words constants that

 can be assigned arbitrary values in or?
 der to fit the empirical data. (In this case
 a is interpreted as the initial position of
 the failing object, u is the initial velocity,
 and g is the acceleration due to gravity.)
 There are straightforward methods for
 finding values of a, u and g that mini?

 mize some measure of the error be?
 tween the predicted and the observed
 positions of the body. If Galileo's task is
 merely to identify those optimum pa?
 rameter values, then the problem is a
 standard exercise in estimation theory.

 But Galileo did not have to confine
 his attention to quadratic laws. He
 could instead have proposed a cubic
 equation, such as

 s=a+ut+ \gi2 + bt3
 where the coefficient b is a fourth ad?

 justable parameter. And of course there
 is no reason to stop with cubic polyno?

 mials. By adding further terms the
 equation could be extended to fourth,
 fifth or sixth powers of t. Indeed, an in?
 finite sequence of equations could be
 formed in this way. Why is it, then, that
 the quadratic law is the choice of physi?
 cists everywhere?

 The answer is not that a quadratic
 law offers closer agreement with the
 empirical data. On the contrary, for any
 given data set, going to a higher-degree
 polynomial can always reduce the total
 error (unless the fit is already perfect). If
 there are n measured data points, then
 an equation of degree n -1 specifies a
 curve that can be made to pass through
 all of the data points exactly, so that the
 measured error is zero. Thus there must

 be something other than accuracy in fit?
 ting data that leads people to prefer the
 quadratic law over any of the higher
 degree equations.

 One possible explanation is that any
 coefficients beyond a, u and g are gener?
 ally very small, so that higher powers of
 t contribute little to the structure of the

 physical law. Another interesting point
 is that even when a high-degree equa

 64 American Scientist, Volume 80

This content downloaded from 
������������193.40.12.10 on Mon, 20 May 2024 12:32:27 +00:00������������ 

All use subject to https://about.jstor.org/terms



 573 534 495 451 395 337  253 horizontal

 quadratic law
 S ? -0.000343694/?2 + 0.708323/1 +199.913

 sixth-power law

 S "485100000000000^ -970200000000000^+2^

 1000

 800

 600H

 400H

 200

 400 600 800
 Initial height

 400 600 800
 - initial height

 1000 1200

 Figure 1. Experiment conducted by Galileo in 1608 offers an illustration of how Ockham's razor and Bayesian analysis can aid scientific infer?
 ence. Galileo's demonstration that a ballistic trajectory is a parabola relied on experiments with a ball rolling down an inclined plane and then
 continuing in free-fall. He released the ball at various heights on the plane and measured the horizontal distance it flew. Data recorded during
 some of these experiments were rediscovered in the 1970s by Stillman Drake of the University of Toronto (Drake and MacLachlan 1975). The
 seven numbers labeled "horizontal distance" on the diagram above appear on a similar sketch in one of Galileo's notebooks; the correspond?
 ing initial heights were inferred from a reconstruction of the experiment. The challenge for the modern analyst, as for Galileo, is to deduce a

 mathematical law giving the horizontal distance s as a function of the initial height h. Two candidate laws are shown here. A quadratic law of?
 fers a good approximation to the data, but a sixth-degree polynomial is even more accurate: It fits the seven data points exactly. Nevertheless,
 the higher-degree equation is not the preferred physical law. One weakness of the sixth-degree equation is that it makes reliable predictions
 only in the immediate vicinity of the data points. Whereas the quadratic law extrapolates reasonably well, the predictions of the sixth-degree
 law for large values of h are implausible. A more fundamental objection to the sixth-degree law is that it is unnecessarily complicated.

 tion fits a given set of data exactly, the
 equation may do very poorly as a pre?
 dictor of new data. For example, given
 seven experimental measurements, a
 sixth-degree polynomial can fit the data
 exactly, whereas a quadratic equation
 will generally have some residual error;
 but if additional measurements are
 made, perhaps at larger values of t, the
 higher-degree law is likely to yield
 much larger errors than the quadratic
 one. Looked at another way, a single
 quadratic law can explain a variety of

 data sets reasonably well, whereas
 many data sets would require quite dif?
 ferent sixth-degree polynomials.

 These observations might well serve
 as an after-the-fact justification for re?
 jecting a law of accelerated motion
 based on a sixth-degree equation, but
 they fail to account for a more funda?

 mental fact: Neither Galileo nor a mod?

 ern student of physics would even con?
 sider a sixth-degree equation in the first
 place. They would favor the quadratic
 law because is it simpler, whereas all

 higher-degree polynomials are unneces?
 sarily complicated.

 Probabilities Prior and Posterior
 Jeffreys suggested that the reason for fa?
 voring the simpler law is that it has a
 higher prior probability; in other words, it
 is considered the likelier explanation at
 the outset of the experiment, before any

 measurements have been made. This is
 certainly a reasonable idea. Scientists
 know from experience that Ockham's
 razor works, and they reflect this expe
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 Figure 2. Series of coin tosses can be ex?
 plained by either of two hypotheses: that the
 coin is fair or that it has two heads. Depend?
 ing on who is doing the tossing, the latter hy?
 pothesis may initially be accorded a low
 probability, but if heads appears invariably
 in a long series of tosses, the hypothesis of a
 rigged coin becomes more attractive. These
 graphs show the predictions of the fair-coin
 hypothesis (gray) and the two-headed-coin
 hypothesis (red) for various numbers of toss?
 es. The fair-coin hypothesis is consistent with
 every conceivable observation;^he two-heads
 hypothesis, in contrast, would be falsified by
 a single appearance of tails. Because the hy?
 pothesis of fraud makes such sharp predic?
 tions, it is given greater credence when those
 predictions come to pass.

 rience by choosing their prior probabil?
 ities so that they favor the simpler hy?
 pothesis. Even though scientists do not
 usually explain their reasoning process
 in terms of prior probabilities, they tend
 to examine simple hypotheses before
 complex ones, which has the same ef?
 fect as assigning prior probabilities ac?
 cording to some measure of simplicity.
 The method reflects the tentative and

 step-by-step nature of science, whereby
 an idea is taken as a working hypothe?
 sis, then altered and refined as new data
 become available.
 In an earlier work Jeffreys and

 Dorothy Wrinch had proposed codify?
 ing the scientist's intuitive preference
 for simplicity in terms of a rule that
 would automatically give higher prior
 probability to laws that have fewer pa?
 rameters (Wrinch and Jeffreys 1921; Jef?
 freys 1939). For laws that can be ex?
 pressed as differential equations, they
 suggested a straightforward algorithm
 for counting parameters. Having sorted
 all possible laws according to this crite?
 rion, one can try the simpler laws first,
 only moving on to more complicated
 laws as the simple ones prove inade?
 quate to represent the data. Thus the or?
 dering of hypotheses provides a kind of
 rationalized Ockham's razor.

 The trouble with Jeffreys's appeal to
 prior probabilities is that it seems to beg
 the question. Defining the simplest law
 as the one with the fewest adjustable
 parameters is a useful strategy, but it
 cannot be extended to yield a clear, uni?
 versal rule for assigning prior probabil?
 ities, as Jeffreys himself points out (Jef?
 freys 1939, page 49). He writes: "I do
 not know whether the simplicity postu?
 late will ever be stated in a sufficiently
 precise form to give, exact prior proba?
 bilities to all laws; I do know that it has
 not been so stated yet. The complete
 form of it would represent the initial
 knowledge of a perfect reasoner arriv?
 ing in the world with no observational
 knowledge whatever." Needless to say,
 no real scientist qualifies as such an un?
 biased perfect reasoner.
 But Jeffreys also suggested a measure

 of simplicity that does not depend on
 prior probabilities; instead it is ground?
 ed in tests of statistical significance. Ba?
 sically, if a law has many adjustable pa?
 rameters, then it will be significantly
 preferred to the simpler law only if its
 predictions are considerably more accu?
 rate. Indeed, if the predictions of the
 two models are roughly equivalent, the
 simpler law can have greater posterior
 probability (the probability an observer

 assigns to the law after the measure?
 ments have been made and the data
 collected). Jeffreys never stated in so
 many words that this result is a form of
 Ockham's razor, although it seems like?
 ly that he was aware of it. The first to
 point out the connection explicitly ap?
 pears to have been Jaynes (1979), and
 independently Smith and Spiegelhalter
 (1980), who called it an "automatic Ock?
 ham's razor," automatic in the sense
 that it does not depend on the prior
 probabilities of the hypotheses. This
 version of the razor is not fully auto?
 matic, however, because it does depend
 on probabilistic modeling of the effect
 of the more complex law on the data.
 In Berger and Jefferys (1992) we ob?

 serve that even this input can often be
 avoided, leading to an objective quan?
 tification of Ockham's razor. We shall

 describe this objective version of Ock?
 ham's razor after reviewing the basics
 of Bayesian analysis and considering
 some examples of how Bayesian meth?
 ods and Ockham's razor can be applied
 to problems in the sciences.

 Probability and Plausibility
 The earliest ideas in the theory of prob?
 ability arose to deal with various prob?
 lems in the mathematics of gambling,
 where a probability can usefully be de?
 fined as the frequency of a specified
 outcome in a long series of identical
 trials. For example, if a fair die is cast
 many times, the face bearing four pips
 comes up about one-sixth of the time,
 and so this outcome is said to have a
 probability of one-sixth. This frequentist
 formulation of probability theory works
 well in many contexts, but there are also
 questions it cannot readily answer. For
 example, a geologist might ask: What is
 the probability of an earthquake, given
 certain precursory seismic signals? Ob?
 viously, it is not possible to calculate this
 probability by performing many trials
 under identical conditions.

 In Bayesian analysis, probability is
 used in another sense: A probability is a
 measure of the plausibility of a hypoth?
 esis or proposition. This alternative def?
 inition is particularly useful in the sci?
 ences. When a paleontologist states that
 the dinosaurs probably died out as a re?
 sult of climatic change, or when an as?
 tronomer says that Mars is probably life?
 less, the probabilities cannot readily be
 understood as frequencies, but they
 have a natural interpretation as indicat?
 ing the speaker's degree of belief or
 confidence in the statement, given the
 available evidence.
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 Figure 3. Detecting plagiarism on a multiple-choice examination is a more serious challenge to Bayesian analysis. Presented here are the an?
 swers of 14 hypothetical students to a 30-question test. Each answer is color-coded for clarity; correct answers are shown in white and incorrect
 answers in black. Similarities in the answers of two students could be explained by either of two hypotheses: coincidence or cheating. As in
 the case of the coin-tossing experiment, the hypothesis of cheating makes sharper predictions; coincidence can explain anything at all. The
 analysis is complicated, however, because the answers to each question have different probabilities. Students 5 and 10, for example, should not
 be accused of collusion even though their answers are identical: They both have a perfect score. But two other students in this sample might be
 viewed with suspicion. David Harpp and James Hogan of McGill University have written a computer program to perform such analysis.

 The foundation of Bayesian statistics
 is a theorem proved by the Rev. Thomas
 Bayes, an English clergyman and ama?
 teur mathematician, in 1761, the year of
 his death; the proof was published
 posthumously (Bayes 1763). At its core,
 Bayes's theorem represents a way?
 Bayesians would argue the most consis?
 tent way?of incorporating new data
 into your understanding of the world.
 Suppose you have a series of hy?

 potheses about some natural phe?
 nomenon. The hypotheses are known
 to be mutually exclusive and exhaus?
 tive, so that exactly one hypothesis
 must be true. Based on all the informa?

 tion available to you, you assign each
 hypothesis a probability. These are the
 prior probabilities mentioned above in
 connection with Galileo's experiment.
 Now suppose some new item of data
 comes to your attention, such as the re?
 sult of an experiment. The question is:
 How should you revise the probabilities
 you ascribe to the various hypotheses in
 light of the new data? Bayes's theorem
 offers a mathematical procedure for an?
 swering this question.
 The notation P(X I Y) represents a

 conditional probability: the probability
 that hypothesis X is true, given the
 available information Y. With probabil

 ities expressed in this way, Bayes's theo?
 rem can be stated as follows:

 P(H,iD&J),p<DI";(yiJ)
 This equation can be used to calculate
 P(H, I D&Z), or the probability that H, is
 true, given both the prior information I
 and the new data D. Three factors enter

 into the calculation. P(H{ 1I) is the prior
 probability ascribed to hypothesis Hif or
 in other words the probability of H, giv?
 en the initial information 1. P(D I Hfid) is
 the probability of observing the new
 data D, given the initial information I
 and assuming that H, is true. Finally,
 P(D 11) is the total probability of observ?
 ing D given 7, no matter which of the
 hypotheses turns out to be true. Thus
 the final probability of H, given both D
 and I increases if the prior probability of

 Hj increases or if D is more strongly pre?
 dicted by Hi and I. Conversely, the final
 probability of H, is reduced if D is pre?
 dicted more generally, by all possible
 hypotheses.

 The use of Bayes's theorem in statisti?
 cal and scientific reasoning has had a
 long and controversial history; see Ed?

 wards, Lindman and Savage (1963) or
 Berger (1985) for discussions of the con?
 troversies. There are two main points of

 contention between Bayesians and tra?
 ditional (frequentist) statisticians. The
 first is philosophical: Some argue that
 since only one of the hypotheses H, can
 be true, it makes no sense to talk about

 the "probability" that Hf is true. This has
 a certain logic if one interprets probabil?
 ities as frequencies, but the objection is
 beside the point if "probability" refers
 to the degree of plausibility of a hypoth?
 esis. This is the way most working sci?
 entists use the term.

 The second point is that there are no
 universally accepted ways of assigning
 the prior probabilities P(H, 11) that
 Bayes's theorem requires. Hence differ?
 ent scientists, faced with the same data,
 may come to different conclusions.
 Bayesians have several responses to this
 complaint. One school believes that
 there is nothing inherently wrong with
 subjectivism, and, indeed, that the fre?
 quentist approach is really no more ob?
 jective, although it has successfully dis?
 guised this fact (Berger and Berry 1988).
 Subjectivist Bayesians point out that it is
 common for scientists to disagree about
 the plausibility of hypotheses, and con?
 tend that this is a natural, and indeed
 inescapable, state of affairs.
 Another school (Laplace 1812, Jef?

 freys 1939) has developed methods of
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 choosing and utilizing "objective" prior
 probability distributions for a wide
 class of problems. With problems for
 which such methods are available,
 Bayesian analysis can claim to be as ob?
 jective as any other statistical method.
 Still, there remain problems for which
 these objective methods do not work.
 Some of the examples discussed below
 fall into this troublesome class.

 To Catch a Cheat
 The key idea linking Bayesian analysis
 to Ockham's razor is the notion of sim?

 plicity in a hypothesis. In quantifying
 this notion, it is useful to observe that a
 simpler hypothesis divides the set of
 observable outcomes into a small set
 that has a high probability of being ob?
 served and a large set that has a small
 probability of being observed; the more
 complex hypothesis tends to spread the
 probability more evenly among all the
 outcomes. Thus the simpler hypothesis
 makes sharper predictions about what
 data will be observed, and it is more
 readily falsified by arbitrary data. In the
 case of Galileo's problem, the more
 complex hypotheses have more param?
 eters, which can be adjusted to accom

 Figure 4. Anomaly in the orbit of Mercury
 was the subject of a celebrated controversy in
 the 1920s, which might have been settled by
 Bayesian reasoning. As observed from the
 earth, Mercury's perihelion/ or point of clos?
 est approach to the sun, appears to advance
 slightly on each of the planet's orbits. The
 total advance is 5,599 arc-seconds per century,
 or about a degree and a half. Of this amount
 some 5,025 arc-seconds results from the pre?
 cession of the equinoxes on the earth (orange),
 and another 531 arc-seconds can be attribut?

 ed to the gravitational influence of the other
 planets on Mercury's motion (gray). That
 leaves something more than 40 arc-seconds
 per century in need of explanation (red). An?
 gles in this diagram are greatly exaggerated.

 modate a larger range of data. In other
 cases, the number of adjustable parame?
 ters is not at issue, but, nonetheless, one
 hypothesis restricts the possible out?
 comes of an experiment more than an?
 other does.

 Suppose a friend who has a reputa?
 tion as a prankster offers to flip a coin to
 decide who will perform a little chore:
 heads he wins, tails he loses. Knowing
 your friend's reputation, you might
 well be concerned that he would use
 trickery (perhaps a two-headed coin) to

 win the toss. The hypothesis HHH that
 the coin has two heads is, under this un?
 derstanding, a simpler one than the hy?
 pothesis Hm that the coin is fair. In a
 series of many coin tosses, HHH will be
 falsified if tails comes up even once,
 whereas any sequence of heads and
 tails could arise under Hm.

 Before the coin is flipped, you might
 believe that the hypotheses HHH and
 Hm are equally likely. Then the coin is
 tossed, and it indeed comes up heads.
 Your degree of belief in the two hy?
 potheses will change as a result of this
 information, and (by Bayes's theorem)
 the posterior probability that you assign
 to HHH should now be twice what you
 assign to Hm. Still, the evidence that
 your friend is trying to fool you is not
 very strong at this point, perhaps not
 strong enough to challenge him for a
 close look at the coin. On the other
 hand, if the coin comes up heads on five
 occasions in a row, you will be rather in?
 clined to think that your friend is play?
 ing a joke on you. Even though both hy?
 potheses remain consistent with the
 data, the simpler one is now consider?
 ably more credible.

 In the days before electronic comput?
 ers, when publishing mathematical
 tables was still a viable business, the
 compiler of a table had to contend with
 possible copyright infringement. If
 someone published a table identical to
 your own work, how could you dem?
 onstrate to the satisfaction of a court

 that the new table was copied from
 yours rather than calculated de novo? To
 guard against plagiarism, compilers fre?
 quently took advantage of the fact that
 numbers ending in the digit 5 can be
 rounded either up or down without sig?
 nificantly altering the result of a calcula?
 tion. By rounding such numbers ran?
 domly, the compiler could embed a
 secret code in the table that identified

 the table as his work, while not signifi?
 cantly affecting the accuracy of the re?
 sults obtained when using the table.

 For example, suppose you published

 a table of sines with 1,000 entries. You
 calculated each value to five decimal
 places, then rounded to four places.
 About 100 of the entries would have
 ended in the digit 5 and would have
 been rounded either up or down at ran?
 dom. Another compiler of a table
 would be very unlikely to happen on
 the same pattern of rounding, since
 there are 2100, or approximately 1030,

 ways to round the 5s in the table.
 If you learn that a newly published

 table has the same rounding pattern as
 your own, Bayesian analysis can quan?
 tify your suspicions of plagiarism. Let

 Hp be the hypothesis that the second
 table was plagiarized from the yours,
 and Hz be the hypothesis that the sec?
 ond table was generated independently
 and just happens to have the same pat?
 tern of roundings. On the data D that
 the rounding patterns are identical, we
 can calculate that P(D IHP) = 1 and
 P(D I Hj) = 2"100. Assuming^equal prior
 probabilities for the two hypotheses,
 Bayes's theorem shows that the poste?
 rior probability of plagiarism differs
 only negligibly from 1.

 The reason for this clear outcome is
 that Hp makes a precise prediction
 about what will be seen, and is inconsis?

 tent with almost all possible data,
 whereas H7 is consistent with any obser?
 vation. Hj "hedges its bets" by trying to
 accommodate all possible data; in con?
 trast, Hp risks everything on a single
 possibility. As a result, when that single
 possibility turns out to be true, HP is re?
 warded for the greater risk it takes by
 being given a very high posterior prob?
 ability compared to HIf even though H{
 is also consistent with the data.

 It is now routine for authors of direc?

 tories, maps, mailing lists and similar
 compilations to deliberately introduce
 innocuous errors into the material.

 When plagiarism or other unauthorized
 use of the material takes place, the pres?
 ence of these errors in the copied mate?
 rial serves as very strong evidence of
 copyright violation.
 David Harpp and James Hogan of

 McGill University have used a similar
 idea to detect cheating on multiple
 choice tests. They wrote a computer
 program to compare the answers given
 by each pair of students in the class
 and look for a near-match between cor?
 rect and incorrect answers. Of course,
 as teachers they hope and expect stu?
 dents to know the subject material, so
 that conclusions about cheating cannot
 be drawn from a student's correct an?
 swers. But if two students make the
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 same errors, the evidence of cheating
 can be compelling. The analysis of the
 data in this problem is more complicat?
 ed than it is in the case of a plagiarized
 mathematical table because different
 questions are answered incorrectly
 with differing frequencies and because
 the various incorrect responses for
 each question can be expected to draw
 different numbers of responses. But
 there are practical solutions for these
 complications.

 Another application of this principle
 comes from evolutionary biology.

 When the DNA of two organisms is
 compared, similarities in sequence can
 be taken as evidence of descent from a
 common ancestor. For DNA within a

 functioning gene, however, the strength
 of such evidence is compromised, be?
 cause the nucleotide sequence could not
 diverge too far without impairing the
 function of the gene product. This con?
 straint is removed in the case of a pseu
 dogene, which is a region of DNA that
 has most of the characteristics of a gene
 but because of some defect does not
 give rise to a functioning protein or oth?
 er product (Max 1986, Watson et al.
 1988). A pseudogene can be passed on
 to an organism's progeny, even though
 it has lost its function. If two species
 have identical or nearly identical pseu
 dogenes (as human beings and chim?
 panzees do, for example), this consti?
 tutes very powerful evidence in favor of
 the hypothesis that the species have a
 common ancestor. Just as with cheating
 on multiple-choice tests, or plagiarism
 of compiled materials, it is the verbatim
 or near-verbatim repetition of a "mis?
 take" that gives the hypothesis of copy?
 ing?in evolutionary terms, descent
 from a common ancestor?a high pos?
 terior probability.

 A Planetary Puzzle
 Our last example illustrating the predic?
 tive power that simplicity confers on a
 hypothesis merits somewhat more de?
 tailed analysis. It concerns a celebrated
 controversy in astronomy and celestial
 mechanics.

 Beginning with the work of the
 French astronomer Urbain Leverrier in
 the 1840s, astronomers were aware of a
 serious problem in explaining the mo?
 tion of the planet Mercury. Newtonian
 theory, which had been extraordinarily
 successful in accounting for most of the

 motions in the solar system, had run up
 against a small discrepancy in the mo?
 tion of Mercury that it could not explain
 easily. After all the perturbing effects of

 Einsteinian theory

 -10 0 10 20 30 40 50 60
 anomalous perihelion motion (arc-seconds per century)

 Figure 5. Two competing explanations of Mercury's anomalous motion can be evaluated
 through an application of Ockham's razor. Einstein's general theory of relativity makes a
 sharp prediction that the perihelion advance is equal to 42.9 arc-seconds per century (purple
 line). A "fudged Newtonian" theory, on the other hand, can be adjusted to accommodate al?
 most any observation. In this analysis the predictions of the fudged Newtonian theory are
 modeled by a normal distribution with a mean of zero and a standard deviation of 50.04. The
 actual value of the anomalous advance?as measured in the 1920s?is 41.6 arc-seconds per
 century (white line). This observation is consistent with either hypothesis, but the much nar?
 rower probability distribution for Einstein's theory favors it by a ratio of 28.6 to 1.

 the other planets had been taken into
 account, there remained an unex?
 plained residual motion of Mercury's
 perihelion (the point in its orbit where
 the planet is closest to the sun) in the
 amount of approximately 43 seconds of
 arc per century.
 It seemed something had been over?

 looked. One appealing possibility was
 the proposal that another planet might
 exist, closer to the sun than Mercury.
 Leverrier himself, along with the En?
 glish astronomer John Couch Adams,
 had recently met with brilliant success
 by predicting that a previously un?
 known planet was responsible for dis?
 crepancies in the motion of Uranus.
 When Johann Gottlieb Galle, a young
 astronomer at the Berlin Observatory,
 looked where Leverrier suggested, the
 planet Neptune was discovered. It
 seemed possible that a similar phe?
 nomenon might explain the anomaly in
 Mercury's motion.
 A number of astronomers duly set

 out to find the new planet, dubbed Vul?
 can in anticipation of its discovery, and
 some sightings were announced. The
 sightings could not be confirmed, how

 ever, and over time interest in the Vul?

 can hypothesis waned.
 Other mechanisms were also pro?

 posed. It was suggested that rings of
 material around the sun could produce
 the observed effect; or the sun might be
 slightly oblate, due to its rotation on its
 axis; or, finally, the Newtonian law of
 gravitation might not be exactly right.
 For example, the American astronomer
 Simon Newcomb (1895) proposed that
 the exponent in Newton's law of gravi?
 tation might not be exactly 2, but in?
 stead might be 2 + e.
 All of these hypotheses had one char?

 acteristic in common: They had param?
 eters that could be adjusted to agree
 with whatever data on the motion of

 Mercury existed. In modern parlance,
 we would call the presence of such pa?
 rameters a "fudge factor." The Vulcan
 hypothesis had the mass and orbit of
 the putative planet; the ring hypothesis
 had the mass and location of the ring of
 material; the solar-oblateness hypothe?
 sis had the unknown amount of the
 oblateness; and all the hypotheses that
 modified Newton's law of gravitation
 had an adjustable parameter (such as
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 Newcomb's e) that could be chosen
 more or less at will.

 Not all of the hypotheses were equal?
 ly probable, however (Roseveare 1982).
 As noted above, sightings of Vulcan
 were never confirmed. As time went
 on, the hypothesis of matter rings of
 sufficient density also became less and
 less likely (Jeffreys 1921), although some
 still believed in them (Poor 1921). A so?

 lar oblateness of sufficient size probably
 would have been detectable with 19th
 century techniques. The hypothesis that
 Newton's law of gravitation needed an
 arbitrary adjustment to fit the data was
 the one explanation that could not be
 ruled out by existing evidence.
 What happened historically is well

 known. In 1915 Einstein announced his
 general theory of relativity, which pre?
 dicted an excess advance in the perihe?
 lion motion of the planets. After some
 confusion (Roseveare 1982, pages 154r
 159) it became clear that the amount of

 the predicted advance for Mercury was
 very close to the unexplained discrep?
 ancy in Mercury's motion. The amazing
 thing was that the predicted value,

 which is 42.98 seconds of arc per centu?
 ry using modern values (Nobili and

 Wills 1986), was not a fudge factor that
 could be adjusted to suit the data but in?
 stead was an inevitable consequence of
 Einstein's theory.

 The general theory of relativity made
 two other testable predictions (the grav?
 itational bending of light and the slow?
 ing of clocks in a gravitational field).
 There has been a lively debate over the
 years as to how important each of these
 phenomena has been in convincing sci?
 entists that general relativity is the cor?
 rect theory of gravity (Brush 1989). Here

 we shall side-step this argument and try
 to put ourselves inside the mind of a
 Bayesian observer in the early 1920s
 who is trying to weigh the evidence for
 various explanations of Mercury's
 anomalous motion.

 Poor v. Jeffreys
 An interesting pair of papers was pub?
 lished in 1921 (Poor 1921, Jeffreys 1921).
 Charles Lane Poor was an astronomer
 at Columbia University who was not
 convinced by the evidence for general
 relativity and who still clung to the mat?
 ter-ring theory. Unfortunately, he also

 made some serious errors in his assess?

 ment of how a matter ring would affect
 the other inner planets. Jeffreys, in re?
 sponse, argued persuasively that the
 ring theory was not viable because suf?
 ficient matter did not exist. Jeffreys's pa?
 per was published before he made his
 major contributions to probability theo?
 ry, and he does not, ironically, make the
 Bayesian argument that we have out

 ? I^H^I^HHRBNSiR?fi* * -r

 -100 -50 0 50 100
 deviation from mean value

 Figure 6. Assumption of a normal distribution with a specific standard deviation is a troub?
 ling step in comparing the Einsteinian and the fudged Newtonian theories. But if the distri?
 bution is indeed normal, there must be some value of the standard deviation that maximizes

 the probability of the observed data point at 41.6 (white line). With a very narrow distribution,
 the data point falls far out on the tail of the curve. With a wide distribution, the probability is
 spread over such a large range of possible observations that no one value has a very high like?
 lihood. For the case at hand, the optimum distribution has a standard deviation of roughly 40
 arc-seconds per century (purple curve).

 lined above. And so we will make for
 Jeffreys the argument that he might
 have made had he returned to this
 question some years later.

 Poor gives a value of a = 41.6 ? 1.4 arc
 seconds per century for the observed
 anomalous motion of Mercury. The task
 for Bayesian analysis is to assign a prob?
 ability, based on this observation, to each
 of the two candidate explanations of the
 planetary motion: Einstein's general the?
 ory of relativity and a "fudged Newton?
 ian" theory, in which some parameter is
 adjusted to account for the discrepancy
 in the observations.

 The place to begin is with the mea?
 surement's reported uncertainty of ?1.4
 arc-seconds per century. Although
 Poor's paper does not discuss the na?
 ture of this uncertainty, it is surely what
 statisticians designate a probable error,

 which is equal to 0.6745 times the stan?
 dard deviation; thus the standard devi?
 ation itself is 2.0 arc-seconds per centu?
 ry. It is reasonable to assume that this
 error has a normal distribution; in other
 words it is described by a symmetrical,
 bell-shaped curve, with the total area
 under the curve equal to 1, and with
 about two-thirds of the area lying with?
 in one standard deviation of the center.

 Poor reports the prediction of Ein?
 stein's theory as oeE = 42.9 arc-seconds
 per century, which is quite close to the
 modern value. On the assumption that
 Einstein's prediction is in fact correct,
 what is the value of P(a IE), the proba?
 bility of observing a value of a = 41.6
 arc-seconds? The answer can be deter?

 mined by evaluating the appropriate
 normal curve (namely the curve cen?
 tered at Einstein's prediction of 42.9 and
 having a standard error of 2.0) at the ob?
 served data value a = 41.6 (Figure 5). The
 resulting value, called the probability
 density of a = 41.6, is about 0.16, which
 is reasonably high in this context. If the
 observed value of a were 42.9, exactly
 equal to the predicted value, the proba?
 bility density would rise only to 0.20.

 Performing the equivalent calculation
 for the fudged Newtonian theory is not
 as straightforward. For the very reason
 that the theory has a fudge factor, it is not
 easy to say exactly what it predicts. To
 give the theory an explicit probabilistic
 form, it is necessary to make some as?
 sumptions, although it will become ap?
 parent later that the outcome is quite in?
 sensitive to these assumptions.
 One useful point of departure is the

 conservative assumption that since the
 Newtonian theory is well established,
 large deviations from it are less believ
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 able than small ones. (If gravity had an
 inverse-cube law instead of an inverse
 square law, the difference would have
 been noticed long ago.) Accordingly, it
 is natural to choose a probability distri?
 bution for the unknown anomalous
 perihelion motion a that makes a = 0
 the likeliest value, with the probability
 density diminishing smoothly as a de?
 parts from zero. Likewise, it makes
 sense to give the probability density a
 symmetrical distribution, at least for
 those theories in which a could equally

 well be either positive or negative, so
 that the perihelion motion of Mercury
 could be either advanced or retarded. It

 is important to think a priori here; we
 are discussing predictions of the alter?
 native theory prior to seeing the data.

 These considerations would be satis?

 fied by a normal probability distribu?
 tion with a mean of a = 0. But the most

 difficult question remains: What is the
 standard deviation of this distribution,
 which determines the width of the bell

 shaped curve? Again the only available
 guidance is the knowledge that very
 large values of the anomalous perihe?
 lion motion are ruled out by existing
 observations. For example, if some
 gravitational effect perturbed the peri?
 helion motion of Mercury by as much
 as 100 arc-seconds per century, it would
 also alter the orbits of Venus, the earth
 and Mars to an extent that could have
 been detected in the 1920s. For the pur?
 poses of rough calculations, a reason?
 able standard deviation is about 50 arc
 seconds per century, which does not
 contradict any observational data on
 the inner planets.
 We now have in hand the two ele?

 ments needed to calculate the probabil?
 ity density of the observed data a = 41.6,
 assuming the validity of a fudged New?
 tonian theory. Assuming that the un?
 known anomalous perihelion shift a
 has a normal distribution with mean
 zero and standard deviation 50, and
 that the observed a is equal to a plus a
 random error having standard devia?
 tion 2.0, standard methods of probabili?
 ty theory can be used to compute
 P(a IF), the overall probability density
 of a under the fudged Newtonian theo?
 ry. In this example, P(a IF) itself turns
 out to have a normal distribution with
 mean 0 and standard deviation 50.04.
 This distribution is much flatter than

 P(a IE), so that the probability is dis?
 tributed over a much wider range. For
 this reason, the probability density of
 any one value is greatly reduced.
 Specifically, the probability density of

 60-rg^^^^^^^^^^^^^^^^^^^^^^^^^^^?^??

 40

 0 10 20 30 40 50 60 70 80 90 100
 standard deviation of "fudged Newtonian" distribution

 Figure 7. Bayes factor indicates the degree to which Einstein's theory is favored over the
 fudged Newtonian theory as a function of the standard deviation assumed in the latter theory.
 For the comparison graphed here the distribution is assumed to be normal. Under this circum?
 stance the minimum Bayes factor is 27.76. An alternative formulation of Ockham's razor can
 be applied to other distributions as well, provided only that they are symmetric and decreas?
 ing with distance from the central value. By this more liberal criterion Einstein's explanation
 is favored over the fudged Newtonian hypothesis by odds of at least 15 to one.

 the actual value a = 41.6 is only about
 0.0056, compared with the probability
 density of 0.16 for Einstein's theory.
 What is of interest, however, is not the

 probability density of the data a = 41.6
 given the various theories, but rather the
 probabilities of the various theories be?
 ing true given a = 41.6. These latter prob?
 abilities could be calculated from Bayes's
 theorem if one were willing to assign pri?
 or (that is, premeasurement) probabili?
 ties to the theories. Luckily, the need to
 choose prior probabilities can be avoided
 (if desired) by use of the ratio of the
 probability densities of a = 41.6 under the
 Einsteinian and the fudged Newtonian
 theories, namely

 _ P(a\E)
 P{a\F)

 It can be shown from Bayes's theorem
 that this ratio, called the Bayes factor,
 gives the odds favoring E over F arising
 from the data. When B is greater that 1,
 the data favor E, and when B is less
 than 1, they favor F. The overall odds of
 E over F are found by multiplying B by
 the prior odds, which is the ratio of the
 prior probabilities of E and F. The point
 here is that it may suffice to consider
 only B; the Bayes factor may well an?
 swer the question without the need to
 formally involve the prior odds.

 Plugging in the numbers yields a val?
 ue of B = 28.6, which is moderately
 strong evidence in favor of the Ein?
 steinian hypothesis. Ironically, the data
 that Poor himself provides in his paper

 against general relativity favor the Ein?
 steinian hypothesis over the fudged

 Newtonian hypothesis.
 The calculations leading to this con?

 clusion involve several factors. There is,
 first, the matter of how well the data fit
 each hypothesis. Obviously, if the ob?
 served data differ sharply from the pre?
 dictions of a hypothesis, one would ex?
 pect that hypothesis to be assigned a
 low probability. In many cases such
 goodness-of-fit considerations are deci?
 sive in choosing among hypotheses. In
 this instance, however, the predictions
 of both theories are consistent with the

 data. Nevertheless, Bayes's theorem of?
 fers a clear choice between the theories.

 The factor that contributes most to
 the outcome of the calculations is the

 width of the probability distribution of
 a for the fudged Newtonian hypothesis.
 Because this distribution is relatively
 wide, the fudged Newtonian hypothe?
 sis has to waste a considerable amount

 of probability on hypothetical values of
 a that are far from the actual a = 41.6.

 The fudged Newtonian hypothesis
 has an additional degree of freedom
 that allows it to accommodate a much
 larger range of hypothetical data than
 does the Einsteinian hypothesis. As a
 result the fudged Newtonian hypothe?
 sis must spread its risk over a larger pa?
 rameter space in order not to miss the
 region supported by the data. In this
 sense, it is a less simple theory than the
 Einsteinian hypothesis. Einstein's hy?
 pothesis makes a sharp prediction
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 about Mercury's perihelion motion,
 which depends only on the known val?
 ues of the constant of gravity and the
 speed of light. Any measurement of the
 perihelion motion that is not close to the
 predicted value contradicts Einstein's
 theory. In contrast, a broad range of
 data?every value of the anomalous
 motion not ruled out for other rea?
 sons?is consistent with the fudged
 Newtonian hypothesis.

 An Objective Ockham's Razor
 One step in our analysis of Poor's argu?
 ment may seem rather doubtful: the
 choice of a specific prior probability dis?
 tribution for the fudged Newtonian hy?
 pothesis. And this aspect of the analysis
 turned out to be particularly important,
 since it is the great width of that distri?
 bution that makes the difference be?
 tween the two hypotheses. We suggest?
 ed first that the probability distribution
 should be symmetric about a = 0 and
 decreasing as the absolute value of a in?
 creases; these are reasonable constraints

 on the shape of the distribution. But the
 final choice of a normal distribution
 with a specific standard deviation of 50
 arc-seconds per century seems rather
 arbitrary. The method by which we ar?
 rived at the figure of 50 would be diffi?
 cult to generalize to other problems.

 The need to specify a specific stan?
 dard deviation for P(a IF) is easy to
 overcome. One can simply consider an
 arbitrary standard deviation?call it
 x?and then graph the Bay es factor B as
 a function of x. This is done in Figure 7.
 Of considerable interest is the finding
 that B has a minimum value; it is al?

 ways greater than 27.76. Thus there is
 strong evidence in favor of the Ein
 steinian theory no matter what value of
 x is chosen.

 It is less obvious how to overcome
 the rather arbitrary choice of a normal
 distribution for P(a IF). The solution is
 given in Berger and Jefferys (1992),
 where it is shown that the Bayes factor
 has a lower limit even if the distribution

 for P(ot IF) is not a normal one, provid?
 ed only that the distribution obeys cer?
 tain rather mild conditions. Specifically,
 for any P(a IF) that is symmetric about
 a = 0 and decreasing in the absolute
 value of a, B is always less than or equal
 to the following expression:

 VI pF\ + V2Z?(|Df|+1.2)) exp(=^L)
 Here DE is the number of standard devi

 ations that a deviates from the Einstein?

 ian prediction; for the data under con?
 sideration DE = -0.65. DF is the number
 of standard deviations that a deviates
 from the base Newtonian prediction of
 a = 0; in this case DF = 20.8. Adopting
 this "worst-case" value gives every ben?
 efit of the doubt to the hypothesis F; if F
 is not favored under these conditions,
 then it is not favored at all. For the pre?
 sent case, the lower bound on B is 15.04,

 which remains fairly strong evidence in
 favor of the Einsteinian theory.

 Conclusions
 Ockham's razor, far from being merely
 an ad hoc principle, can in many practi?
 cal situations in science be justified as a
 consequence of Bayesian inference.
 Bayesian analysis can shed new light on
 what the notion of the "simplest" hy?
 pothesis consistent with the data actual?
 ly means. We have discussed two ways
 in which Ockham's razor can be inter?

 preted in Bayesian terms. By choosing
 the prior probabilities of hypotheses,
 one can quantify the scientific judgment
 that simpler hypotheses are more likely
 to be correct. Bayesian analysis also
 shows that a hypothesis with fewer ad?
 justable parameters automatically has
 an enhanced posterior probability, be?
 cause the predictions it makes are
 sharp. Both of these ideas are in agree?

 ment with the intuitive notion of what

 makes a scientific theory powerful and
 believable.
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