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It is proposed that a cognitive map encoding the relationships between entities in the world supports flexible
behavior, but the majority of the neural evidence for such a system comes from studies of spatial navigation.
Recent work describing neuronal parallels between spatial and non-spatial behaviors has rekindled the
notion of a systematic organization of knowledge acrossmultiple domains.We review experimental evidence
and theoretical frameworks that point to principles unifying these apparently disparate functions. These
principles describe how to learn and use abstract, generalizable knowledge and suggest that map-like rep-
resentations observed in a spatial context may be an instance of general coding mechanisms capable of
organizing knowledge of all kinds. We highlight how artificial agents endowed with such principles exhibit
flexible behavior and learn map-like representations observed in the brain. Finally, we speculate on how
these principles may offer insight into the extreme generalizations, abstractions, and inferences that charac-
terize human cognition.
Introduction
In the last two decades and more, computational and behavioral

neuroscientists have found formal explanations of neural signals

that control behavior in carefully controlled repetitive scenarios

(e.g., Behrens et al., 2007; Daw et al., 2006; O’Doherty et al.,

2004; Platt and Glimcher, 1999; Schultz et al., 1997). In some in-

stances, these models predict neuronal activity with truly exqui-

site precision (Cohen et al., 2012; Gold and Shadlen, 2007;

Schultz et al., 1997), and when paired with heavy computational

resources, related algorithms have had extraordinary successes

in training artificial agents to super-human levels in games as

diverse as Atari (Mnih et al., 2015) and Go (Silver et al., 2016).

However, there is a stark gapbetween the typesof behavior these

models can account for and the sophisticated inferences that

characterize much of human behavior. Human and animal

behavior is flexible. We can choose how to act by exploiting ac-

tions that have worked in the past but also based on experiences

that areonly loosely related;wecan imagine theconsequencesof

entirely novel choices. We can abstract important features of ex-

periences and generalize them to new situations. These differ-

ences were clearly articulated by Tolman as he watched rats

make flexible inferences in complex mazes. They would learn

rich details of the mazes in the absence of any rewards and to

the benefit of future behavior. For example, after unrewarded

exposure to mazes, rats would take shortcuts to reach rewards

(Tolman and Honzik, 1930) or would find new routes when old

oneswere blocked (Tolman et al., 1946). Such behaviors inspired

Tolman to coin the term ‘‘cognitive map,’’ referring to a rich inter-

nal model of the world that accounts for the relationships be-

tween events and predicts the consequences of actions.
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For Tolman, this cognitive map was a systematic organization

of knowledge that spanned all domains of behavior (Tolman,

1948). However, its biggest influence in cognitive neuroscience

has been in the study of spatial behaviors (O’Keefe and Nadel,

1978), perhaps because the literal interpretation of the term

‘‘map’’ gives clear predictions of neural activity. Even Tolman

cannot have imagined the beautiful precision with which map-

like representations are reflected in the activity of single neurons

in the hippocampal-entorhinal system (Figure 1). The most

celebrated of these neurons are active at particular places in

the map. ‘‘Place’’ cells in the hippocampus restrict their activity

(usually) to a single location in space (O’Keefe and Nadel,

1978). ‘‘Grid’’ cells in the medial entorhinal cortex fire at multiple

place fields equally placed on a triangular grid (Hafting et al.,

2005) and are therefore able to represent vector relationships

and distances between different spatial locations (Bush et al.,

2015; Stemmler et al., 2015). Along with these come a veritable

zoo of less celebrated but equally remarkable cells that reveal

how ‘‘knowledge’’ is organized in the map (Grieves and Jeffery,

2017), such as band cells (Krupic et al., 2012) and cells that

encode the vector relationships to borders (Solstad et al.,

2008), objects (Høydal et al., 2018), rewards (Gauthier and

Tank, 2018), and goals (Sarel et al., 2017); alongside these are

cells that encode the current head direction (Taube et al.,

1990) or cells that encode the locations of other agents on the

map (Danjo et al., 2018; Omer et al., 2018).

These spatial cells appear to have specialized functional rep-

resentations, such that each plays an important role in under-

standing and navigating a 2D world. Notably, however, the

same brain structures containing these cells play important roles
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Figure 1. The Hippocampal Zoo
(A) Anatomical location of the hippocampus and entorhinal cortex in different species. Adapted with permission from Strange et al., (2014).
(B) A variety of cells in the hippocampal formation represent different spatial variables. Place cells (O’Keefe and Nadel, 1978) are active when an animal is in a
single (sometimes multiple) location. Grid cells (Hafting et al., 2005) are active when an animal is in one of multiple locations on a triangular lattice. ‘‘Social place
cells’’ (Danjo et al., 2018; Omer et al., 2018) are active in one animal when it observes that another animal is in a particular location. Head-direction cells (Taube
et al., 1990) are active when an animal’s head is facing a particular direction. Object-vector cells (Høydal et al., 2018) are active when an animal is in a particular
direction and distance from any object. Reward cells (Gauthier and Tank, 2018) are active when an animal is in the vicinity of reward. Boundary vector cells (Lever
et al., 2009) are active at a given distance away from a boundary in a particular allocentric orientation. Goal direction cells (Sarel et al., 2017) are active when the
goal of an animal is in a particular direction relative to its current movement direction. The green ‘‘G’’ indicates the goal location.
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in neural processes that relate to a broader view of a cognitive

map, such as generalization, inference, imagination, social

cognition, and memory (Hassabis et al., 2007; van der Meer

et al., 2012; Ólafsdóttir et al., 2015; Tavares et al., 2015). It is

therefore a challenge to understand how such cells might help

us organize knowledge in the complex, high-dimensional, non-

spatial cognitive map that Tolman envisaged.

In this perspective, we examine computations required by such

a system and try to understand how they relate to cellular re-

sponses and mechanisms in the hippocampal formation and

ventral prefrontal cortex. We highlight computational similarities

that have emerged between studies of reinforcement learning

and spatial navigation, which are allowing the abstract notion of

a ‘‘cognitive map’’ to be formalized with mathematics that de-
scribes general behavioral problems—spatial and non-spatial—

and are giving new insights into old questions about neural repre-

sentations. We then propose how these formal ideas can be

extended to provide explanations for the types of powerful infer-

ences and generalizations of structural knowledge that underlie

flexible human behavior. We suggest that cognitive maps can

be constructed from general patterns of abstract relations that

are separated from sensory representations and therefore gener-

alize across different sensory environments. These abstract rep-

resentationscanbeconsideredbasissets fordescribing relational

knowledge. New cognitive problems can then be treated as infer-

ence in this relational basis. We finally speculate that such a view

can help to understand a number of psychological phenomena,

from schemas and generalization to planning and choice.
Neuron 100, October 24, 2018 491
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Figure 2. The Importance of Learning Sets—Harlow and Beyond
Wewill describe three tasks relying on learning sets. (Harlow, 1949) demonstrates the learning of task structure from repeated exposure to the same task. (Walton
et al., 2010) and (Takahashi et al., 2011) demonstrate the implications of OFC lesions on a part of the learning set common across many different tasks.
(A) Schematic of Harlow’s task. Different instantiations of the task share a common underlying structure (‘‘only one object is rewarded’’) that can be exploited to
facilitate faster learning.
(B) Accuracy data from (Harlow, 1949). Over multiple exposures to the task, monkeys acquire this underlying structure, termed a ‘‘learning set,’’ and use it to learn
faster in new instantiations of the task.
(C) Monkeys can also learn to track changing probabilities of reward, but OFC lesions cause an intriguing deficit whereby they can track changes in reward unless
the best option switches.
(D) This deficit is because they no longer knowwhich recent choice causedwhich recent reward. In these regression plots, correct attribution between choice and
reward is on the diagonal. OFC-lesioned animals learn using the off-diagonal terms, which imply that if average recent reward is high (low) the animal increases
(decreases) their preference for their average recent choice, ignoring which choice caused which reward. Greyscale colors are regression weights estimating the
influence of recent choices and outcomes on current behavior.
(C) and (D) are adapted from Walton et al., (2010).
(E) Takahashi et al. (2011) showed a similar effect in rodents.Wilson et al., (2014) demonstrated that it could be accounted for by amodel in which the animal could
not distinguish latent states (reduced state diagram shown). Here the states ‘‘reward after left choice’’ and ‘‘reward after right choice’’ are represented separately
in the model that best accounts for control data. The fact that they are not in the model that best accounts for OFC-lesioned data reflects the rodents’ inability to
pair the reward with the choice that caused it. We refer the reader to their beautiful paper for other examples of state-space deficits caused by OFC lesions.

(legend continued on next page)
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Organizing Structural Knowledge for Flexible Learning
While Tolman was watching rats running in mazes, another hero

of psychology, Harlow, was asking human and non-human pri-

mates to choose between two stimuli to find a reward. Discrim-

inating a rewarding from an unrewarding stimulus should not

require any sophistication or flexibility at all—the animal could

just preferentially repeat rewarded choices—but Harlow noticed

something interesting. As subjects had more and more experi-

ence of the task (with different stimuli each time) they got better

and better at learning new discriminations (Figures 2A and 2B).

As well as learning which was the better stimulus, the subjects

were learning something abstract about how to perform the

discrimination. He termed this abstract knowledge a ‘‘learning

set’’ (Harlow, 1949). In this and the following sections, we will

contend that acquiring such a learning set requires an abstract

representation of the structure of the task that encodes relation-

ships between task events. This kind of representation allows

inferences from remote observations and generalization of infor-

mation across different tasks with similar structure. We will also

argue that grid cell activity is an example of such a representa-

tion in the spatial domain, such that grid cells encode statistical

regularities in spatial navigation that occur due to the common

structure of all two-dimensional spaces.

To acquire such a learning set, you need to learn abstract re-

lationships between different stimuli, such as ‘‘if one stimulus is

rewarded, the other is not,’’ or ‘‘the rewarded stimulus might

change after a number of trials.’’ Part of this learning process in-

cludes learning basic knowledge about how the task works. For

example, you need to know that the reason you are getting a

reward now is because of the stimulus you just chose and not

the stimulus from 3 trials ago or the door that just opened in

the corridor. When lesions are made to the ventral prefrontal

cortex (vPFC) (orbitofrontal and ventrolateral prefrontal cortex)

in macaque monkeys, this ability is abolished (Rudebeck and

Murray, 2011; Walton et al., 2010). Animals no longer assign

the credit for each reward to the contingent choice that caused

it, but instead to an imprecise running average of recent choices.

After vPFC lesions, macaques that once knew the structure of

the task now learn by smooth temporal correlations (Walton

et al., 2010; Figures 2C and 2D). While such a strategy can

work well in stable environments, it leads to disastrous perfor-

mance when behavioral flexibility is required, such as when

reward contingencies change. These vPFC properties are not

unique to the brains of macaque monkeys. In humans, fMRI

signals in vPFC reflect precise task contingencies when other

reward signals in the brain do not (Jocham et al., 2016). In ro-

dents, if unilateral lesions are made to OFC, dopaminergic cells

in the same hemisphere continue to report a veridical reward

prediction error, but with a prediction that no longer reflects

which choice has caused the reward (Takahashi et al., 2011).

What does it mean to have a representation of the structure

of a problem? Thinking about these issues more formally has
(F) A learning set for a task is composed not only from the abstract structure co
findings) but also from basic knowledge that is generalizable to many tasks. Fo
following outcome —is a feature of many different tasks and life experiences.
(Takahashi et al., 2011). The full learning-set model might consist of many higher-
specific learning set.
led to a richer understanding (Wilson et al., 2014). In reinforce-

ment learning, such behavioral control problems can be cast in

terms of trying to find a policy that will maximize long-term,

cumulative reward. The problem is characterized by states, s,

and probabilistic transitions between states, Pðs0 �� s; aÞ, which

may be controlled by actions, a. The policy, p, determines the

probability of choosing each action in each state; p = Pða j sÞ.
If r denotes the instantaneous reward received at a current

state, Vp denotes the expected cumulative reward over the

foreseeable future under a policy, and g the discount factor

weighting immediate rewards higher, then, after some maths,

our goal becomes finding a policy that maximizes value (the

following equation):

VpðsÞ= Ep

"
rðsÞ+g

X
s
0
P
�
s
0 �� s; a�Vp

�
s
0�#

In this framework, the burden of representing the problem

structure is carried by the state definition, s, and the transitions,

Pðs0 �� s; aÞ (Box 2). These respectively describe how the task is

divided up into different elements—for example, the state of hav-

ing just seen a particular stimulus—and how one element leads

to another. Wilson and colleagues showed that the credit assign-

ment deficits described above, along with other types of deficit

commonly observed after ventral prefrontal lesions, are pre-

dicted by a reinforcement learning agent that only learns from

immediate sensory observations and does not assign credit to

abstract states (such as ‘‘I just chose stimulus A,’’ Figure 2E). It

is argued, then, that activity in the OFC must encode the current

location in a latent, or unobserved, state space. Indeed, this

exact information can be decoded from the OFC fMRI signal

when humans engage in a complex taskwith awell-defined state

space (Schuck et al., 2016).

To account for effects of learning set, however, a state repre-

sentation must do more than simply label the current state. First,

it must encode how this state relates to other states in the world

(so an animal can know, for example, that if one state is not re-

warded the other state likely is, or if their spouse’s wallet is on

the table then they are more likely in the garden than the pub).

Second, it must encode states in a fashion that generalizes

across different sensory realizations of the task. A key feature

of both Harlow’s experiments and the OFC tasks in (Walton

et al., 2010) is that every example of the task used different stim-

uli, but animals improved on the task nevertheless. Indeed, when

monkeys are asked to make economic choices between

different amounts of two juices, A and B, OFC neurons encode

a rich variety of value and task-related variables (Padoa-

Schioppa and Assad, 2006), but when these two juices are re-

placed with two different juices, C and D, the same neurons

encode the exact same variables for the new juices (Xie and

Padoa-Schioppa, 2016; Figures 3C and 3D). Indeed, lesions to
mmon to different realizations of a specific task (as demonstrated in Harlow’s
r example, the notion of contingency—that a choice leads to the immediately
This part of the learning set underlies the results in (Walton et al., 2010) and
order, across-task learning sets converging to different degrees on each task-
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Figure 3. MEC and OFC Neurons Generalize across Different Contexts
(A) In a spatial remapping experiment, animals are moved between two different environments. Entorhinal grid cells maintain a constant spatial phase structure
(top), in contrast with the global remapping of hippocampal place cells (bottom) (Bostock et al., 1991; Leutgeb et al., 2005).
(B) MEC object vector cells respond specifically when an animal is at a given direction and distance from any object, regardless of identity of the object (top). Cells
with object-vector properties are also found in the hippocampus (bottom). These cells, however, respond to only a subset of the objects (bottom). MEC data from
Høydal et al., (2018); hippocampal data from Deshmukh and Knierim, (2013).
(C) Whenmonkeys choose between pairs of different juices offered in different amounts, OFC neurons encode the same decision variables across contexts, such
that two neurons ‘‘supporting’’ the same decision for one pair of juices also support the same decision in different pairs of juices (top). Firing rate of an example
OFC neuron is shown as a function of the quantity ratio of the two juices (bottom). Black symbols represent the percentage of trials in which themonkey chose the
less-preferred juice. Red symbols represent the average firing rate.
(D) Population analysis demonstrating that OFC neurons generalize over different contexts. Each task-related OFC neuron was classified according to its
strongest encoded decision variable (offer value, chosen value, chosen juice) and the sign of this encoding. This was done in two separate contexts (A:B choice
and C:D choice shown in rows and columns, respectively). Numbers are cell counts for encoding a pair of variables in the two contexts. Statistical significance
was assessed via a null distribution (greyscale colors are P values). The strong diagonal indicates that neurons tend to encode the same variable with the same
sign in both contexts.
(C) and (D) are adapted with permission from Xie and Padoa-Schioppa, (2016).

494 Neuron 100, October 24, 2018

Neuron

Perspective



Neuron

Perspective
neighboring vlPFC cause particular deficits in generalizing

knowledge between different stimulus sets (Rygula et al., 2010).

Generalizing Spatial Representations
So far, we have argued that vPFC representations in learning

tasks have three important computational properties. (1) They

encode ‘‘location’’ in a state space of the task. Their representa-

tion of location (2) embeds structural knowledge of the relation-

ships between different states, and (3) it can be generalized

across tasks with shared statistical structure but different sen-

sory events. These three features of OFC activity resemble the

key computational properties of entorhinal cells in spatial do-

mains. Grid cells famously encode location in a spatial task.

They do so with a representation that has implicit within it knowl-

edge of the spatial relationships between all locations, allowing

remote inferences (Bush et al., 2015; Stemmler et al., 2015) (for

further convincing see next section), and this structural code

generalizes across different sensory environments. To under-

stand this final point, consider what happens in a hippocampal

remapping experiment in which animals are moved between

two different boxes (for example, with different wall colors). In

these experiments hippocampal place cells remap when the

sensory environment changes (Bostock et al., 1991; Leutgeb

et al., 2005). Neighboring place cells in one environment are un-

likely to be neighbors in the other. By contrast, except for a rigid

body change, grid cells do not remap between environments.

Within a module, phase neighbors in one environment are phase

neighbors in the other (Fyhn et al., 2007; Figure 3A). The entorhi-

nal representation of location therefore embeds the structural

information about general relationships in 2D space that is com-

mon among all environments. Similarly, object vector cells in en-

torhinal cortex activate for any object present in the environment

(Høydal et al., 2018), whereas similar cells in hippocampus acti-

vate for only a subset of objects (Deshmukh and Knierim, 2013;

Figure 3B).

With these relationships in mind, it is intriguing that deficits in

learning set can be achieved by transection of the fornix (which

disconnects frontal cortex from the hippocampus) (M’Harzi

et al., 1987) or by fronto-temporal disconnection (Browning

et al., 2007). Similarly, interactions between OFC and hippocam-

pus appear to be important for correctly updating task represen-

tations in humans (Boorman et al., 2016) and rodents (Wikenhe-

iser et al., 2017). It is therefore interesting to understand how we

can relate these more general forms of behavior to hippocampal

representations familiar from spatial navigation tasks.

These relationships may be more than simply theoretical. By

casting reinforcement learning problems in continuous but

non-spatial domains, recent studies suggest that place and

grid cells may have a broader role than the coding of physical

space. These studies show activity of cells in the same regions

as place and grid cells, measured either with fMRI or directly,

coding for non-spatial information in a manner analogous to

the coding of spatial information.

In humans, it is possible to record grid-like activity during vir-

tual reality navigation either directly from the activity of entorhinal

cells during surgery (Jacobs et al., 2013) or indirectly with fMRI

(Doeller et al., 2010). While fMRI cannot give access to cellular

activity directly, the hexagonal symmetry of the grid pattern
has a striking shadow in the fMRI signal. As subjects move in

the VR environment, fMRI activity exhibits a 6-fold oscillation

as a function of running direction (Doeller et al., 2010; Figures

4A and 4B). Notably, this pattern can be observed not only

when subjects navigate in virtual spatial worlds, but also when

they are engaged in an operant non-spatial task that has the

same statistical structure as space (2D continuous organization)

(Constantinescu et al., 2016). Instead of moving in space, sub-

jects watch as a cartoon bird morphs in two dimensions (the

lengths of the neck and legs). Their task is to predict when these

birds will match the appearance of one of several target birds

that are associated with different rewards. The instantaneous

change in the appearance of the bird describes a vector in a

2D conceptual space defined by the neck and leg lengths, and

grid-like coding is inferred by looking for a 6-fold oscillation in

fMRI activity as a function of this vector. This pattern can be

observed in entorhinal cortex but also in other brain regions

including ventral frontal cortex (Constantinescu et al., 2016;

Figure 4C). By contrast, in hippocampus, cells fire to specific ab-

stract stimuli, such as Jennifer Aniston (Quiroga et al., 2005), and

therefore code information in a fashion analogous to place cells

in spatial domains.

Similarly, for rodents, the task of ‘‘holding a lever whilst a tone

increases in frequency and then releasing it at a target frequency

to get a reward’’ is not obviously a spatial one, but it has a topol-

ogy familiar from space—one frequency leads to the next in the

operant box in the same way as one place leads to the next on a

linear track. When rodents perform this task (Aronov et al., 2017),

hippocampal cells exhibit place-like firing fields, but for different

frequencies rather than places; entorhinal cells (including a third

of spatial grid cells) exhibit multiple distinct fields at different fre-

quencies. These multifield firing fields are suggestive of the firing

fields of grid cells on a linear track (Yoon et al., 2016; Figures 4D

and 4E), though a direct correspondencewas not assessed. Grid

cells also encode gaze location on a 2D image in both nonhuman

(Killian and Buffalo, 2018) and human primates (Julian et al.,

2018; Nau et al., 2018).

There is evidence, then, that place and grid patterns are

neither unique to spatial navigation nor, in humans at least,

unique to the hippocampal formation (see also Jacobs et al.,

2013 and Box 1). Instead they may reflect the 2D topology that

is inherent to space aswell as characterize other domains. These

results suggest that the role of place and grid cells in spatial

cognition is a specific instance of more general coding mecha-

nisms realized in the hippocampus and connected regions.

Unifying Spatial and Non-spatial Coding under a
Common Framework
In order to understand more formally what this means, it is useful

to return to the RL framework laid out in the previous section (and

in Box 2). Because RL is a general framework, it is not limited to

explaining operant tasks. It can equally easily be used to give a

fresh perspective on the spatial navigation problem (Gustafson

and Daw, 2011). For example, consider a rat running on a linear

track. Using the RL framework, we can express this task by

choosing our states (s) to be the different locations along the

track (Figure 5A). The probability that the rat moves from state

to state depends on its policy and is given by Ep½Pðs0 �� s; aÞ�;
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Figure 4. Generalizing Spatial Representations
(A) Logic behind measuring grid cells with fMRI. Trajectories through a 2-dimensional space can be either aligned or misaligned with the axes of the grid code
(white lines denote grid axes). Greater signal for trajectories aligned versus misaligned with the grid results in a hexagonally symmetric sinusoidal modulation of
the fMRI signal with movement direction. Adapted with permission from Doeller et al., (2010).
(B) This modulation of the fMRI signal—providing evidence for grid cells—is observed in entorhinal cortex (ERH) when participants navigate through virtual reality
spatial worlds (Doeller et al., 2010). Left is an aerial view of the spatial task map.
(C) The same signal is observedwhen participants navigate through an abstract conceptual space defined by two continuous dimensions: the neck length and leg
length of ‘‘stretchy birds,’’ suggesting grid cells code for non-spatial dimensions (Constantinescu et al., 2016).
(D) Cells in the hippocampus fire at specific sound frequencies in a non-spatial sound manipulation task (bottom) in a manner analogous to the representation of
spatial locations in place cells on a linear track (top). In both top and bottom, each horizontal line shows normalized activity of one cell as a function of either
distance along a linear spatial track or sound frequency. Cells are ordered according to the position of the firing field. Top is adapted with permission from Miao
et al., (2015) and bottom from Aronov et al., (2017).
(E) Grid-like coding in entorhinal cortex of a linear spatial track (top) and progression through the sound manipulation task (bottom). Top is adapted with
permission from Yoon et al., (2016) and bottom from Aronov et al., (2017).
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however, if we ignore the effects of policy and assume that all

movement is through diffusion (random walk on the graph),

then this same equation tells us the environment’s transition

probabilities between states (T). This matrix effectively tells us

which states are neighbors and therefore, on a linear track, en-

capsulates the 1-dimensional topology of the problem space

(Figure 5A). It is a useful matrix to know. If you are planning

your future and want to know where you will likely be at the

next time-step, you can simply multiply your current state vector,

s, by T to give Ts. In two time-steps, your state probability distri-

bution will be T2s, and in 3-steps T3s etc (Figure 5A).

This type of future-thinking is an example ofmodel-based rein-

forcement learning, where an agent that knows the states and

transitions (and therefore has a ‘‘model’’ of the world) can simu-

late its future step-by-step and make decisions about which

future is best (Daw et al., 2005, 2011; Sutton and Barto, 1998).

While there is strong evidence for this type of future projection

at choice points in spatial tasks (Doll et al., 2015; Johnson and

Redish, 2007), it is very different in spirit to how we think about

most navigation problems. In navigation problems, instead of

sequentially planning through each neighboring location, agents

are able to use the known Euclidian properties of 2D space to

infer local vectors that will connect distant points. Can similar

inferences be made in RL state-spaces? Without delving deep

into the mathematics, there is a set of vectors from which it is

possible to compute all of the n-step transition matrices

(T,T2,T3 . Tn.) by simple linear combination. These are the

eigenvectors of T (Figure 5A). These vectors linearly encode all

futures and from them it is easy to compute distances between

any pairs of states without the need for expensive step-by-
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step simulation (Baram et al., 2018; Stachenfeld et al., 2017).

For continuous worlds these eigenvectors are periodic and for

2D worlds, they have grid-like properties (Dordek et al., 2016;

Stachenfeld et al., 2017; Figure 5B).

It is notable that, because place cells index overlapping states

in a 2D world, these eigenvectors are also the principal compo-

nents of place cell activity (Dordek et al., 2016; Stachenfeld et al.,

2017). Qualitatively similar representations have been reported

from recurrent neural networks trained to predict location (Cueva

and Wei, 2018). The eigen or grid code can therefore also be

thought of as a code that captures the variance in the place-

cell population in an information-efficient manner. Following

the introduction of certain constraints to the optimization pro-

cess, a recurrent neural network agent trained to predict place

cell (and head-direction cell) activity from self-motion input as

it explores an open field will develop hexagonally grid-like cells.

These units match biological grid cells on a large range of prop-

erties and emerge naturally as the network’s preferred represen-

tation in the penultimate layer (Figure 5B; Banino et al., 2018).

Though a different architecture and optimization process, this

highlights the fact that gridlike firing emerges from the statistics

of transition structure. By using these cells in more complex en-

vironments, the agent can solve navigation problems that require

vector navigation (such as finding shortcuts that have never pre-

viously been taken) (Banino et al., 2018) (Figure 5C) suggesting

that this gridlike basis is useful for producing complex behavior.

To date, we have been considering how to represent likely

future experiences in situations where theworld has useful struc-

ture but behavior is random. In fact, because transitions depend

on choices, the expected transition probabilities, T, change if the



Box 1. Representations in Ventral Prefrontal Cortex

In this review, you will discover (to your frustration) that we often treat vPFC and entorhinal representations as interchangeable.We

do this because, although there are certainly differences, we believe that the similarities lead to clear computational arguments

about the representation of models and the generalization of structural knowledge. We believe these similarities give some handle

on how task or structural abstractions can be achieved computationally.

There are few direct comparisons between representations in the two structures and, while there is a great deal of data on what

variables might be represented in vPFC, there is little knowledge of how these variables might be encoded. We hope, therefore,

that we will be forgiven for not focusing our attention on representations that might be specific to one region or another, or even

(and there are substantial differences, e.g. Haber and Behrens, 2014; Rudebeck and Murray, 2014; Rushworth et al., 2011) to one

part of vPFC or another.

However, it is worth briefly highlighting some potential differences insofar as they relate to the reinforcement learning framework

described in the perspective. Both vPFC and MTL have rich sensory inputs that may provide the basis for state representations.

One prominent suggestion, however, is that it is situations in which the state cannot be deduced from the immediate sensory input

that distinguish the two structures (Schuck et al., 2016; Wilson et al., 2014). Such tasks are susceptible to vPFC lesions, and it is

argued that the ability to change the state representation based on this unobservable ‘‘latent’’ knowledge (to represent a ‘‘latent

state’’) may be particular to vPFC (Wilson et al., 2014). This argument resonates with arguments made about PFC more broadly,

which suggest that representations of ongoing rules and contexts in PFC can flexibly alter representations in upstream areas (Miller

and Cohen, 2001). Similarly, vPFCmay also bemore suited to forming longer term plans. This notion is related to ideas of hierarchy

proposed for dorsal PFC (e.g., Koechlin et al., 2003). One possible suggestion is that one-step transition statistics are represented

in MEC, while vPFC can represent multi-step, non-diffusive plans using this information together with additional structural con-

straints (see final section). Through its connections (Haber and Behrens, 2014), vPFC also has access to information about an

animal’s internal states (such as hunger) and goals (akin to a reward function in reinforcement learning). These may allow vPFC

to flexibly re-represent state space in a goal-dependent fashion.
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animal shows statistical regularity in its behavior (for example, if

the animal likes to approach food-sources). This policy-depen-

dence can be harnessed to make predictions about hippocam-

pal representations that are not immediately obvious from spatial

considerations alone. To do this, it is necessary to re-envisage

the place cell representation. Instead of coding where the animal

is now, once an animal becomes familiar with an environment, it

is possible to encode its best estimate of where it will be in the

imminent future. This is clearly a useful representation for con-

trolling behavior, as it allows the animal to rapidly evaluate which

local choices have profitable futures. In reinforcement learning,

this is termed a successor representation (Dayan, 1993) as it pre-

dicts the expected successor states. By assuming that the place

cells encode these successors rather than current location, it is

possible to account for a number of seemingly disparate findings

in the place cell literature, such as the tendency of place fields to

stretch slowly toward the start of a 1-way linear track or to clump

in high densities around rewarding locations (Stachenfeld et al.,

2017; Figure 5D).

This general framework goes some way to explaining why

place and grid representations are not unique to spatial situa-

tions, but also implies that they should not be unique to contin-

uous environments. While this is an ongoing topic of investiga-

tion, there is suggestive evidence that it will be a profitable one.

In humans, FMRI similarity measures in hippocampus (Garvert

et al., 2017; Schapiro et al., 2013; Stachenfeld et al., 2017) and

entorhinal cortex (Garvert et al., 2017) respect the statistical

transitions of discrete state-spaces even when subjects are

unaware that transitions are non-random. By examining these

representations it is possible to reconstruct directly from the

neural data state distance matrices that resemble the true

transition or successor distances between states (Figure 5E).
In operant tasks, rather than simulating all possible transitions

online, there is evidence human behavior relies on precompiled

transition distances consistent with the successor (or eigen-)

representation (Momennejad et al., 2017a) and that these pre-

compiled distances rely on offline activity in hippocampus and

ventral frontal cortex (Momennejad et al., 2017b). Similarly, in a

rodent operant task, a manipulation of either hippocampus or

orbitofrontal cortex prevents the animals from using the state

transition structure to guide their next choice (Miller et al.,

2017, 2018).

Inferences, Abstractions, and Factorized
Representations of Tasks
Within either a reinforcement learning task or a spatial environ-

ment, then, a clever representation of how states are related

can allow for flexible inferences. But how does the brain come

by such a representation each time it encounters a new prob-

lem? In this section, we argue that structural knowledge can

be abstracted away from its sensory inputs and therefore gener-

alizes to new environments, state spaces, and tasks. We argue

that some structural representations are broadly required across

many tasks that require flexible inferences and rapid learning.

As discussed, such inferences are routinely made by animals

in the spatial domain. One way to understand how an animal

might take a new shortcut, for example, is to consider that the

statistical structure of 2D space places strong constraints on

what state transitions are possible. When the animal is moving

in a spatial environment, it samples some of those states and

transitions, and can use this prior structural knowledge to fill in

many states and transitions that it has not seen, but which are

implied by the 2D nature of the problem. Are there other situa-

tions in nature where similar constraints might apply? Are there
Neuron 100, October 24, 2018 497



Box 2. Clarifying the Terminology

STATES OF THE WORLD

A state is a possible configuration of the world. Whereas the true state of the world is complex and high dimensional, only a very

small part of this state is relevant to the animal performing a task. The animal therefore has a state definition problem. If they can

give different names to states in which these relevant dimensions are different but the same names to states which only differ in

irrelevant dimensions, they will dramatically reduce the learning problem, whichever learning algorithm they employ. For example,

a waiter learning efficient strategies for opening wine bottles should have separate states for corks versus screw-tops but not for

red versus white contents. This way, they will learn fastest; with two states rather than one, they will be able to learn two different

strategies, and with two states rather than four, they will have twice as much experience on each strategy.

LATENT STATES

Problems arise when these relevant dimensions are not observable. While waiters can often see the tops of their wine bottles, there

is little immediate sensory data to tell a driver whether they can or cannot use the bus route. One solution to this problem is for the

driver to build different latent states that allow different routes to be planned during commuting and non-commuting times.

MODELS OF THE WORLD

A model of a world is an internal representation the world’s structure that can be used to predict future states of the world. A good

model encompasses a parsimonious state definition, but also an understanding of how each state transitions to the next. This is

usually expressed as P(s’js,a), the probability that each state swill transition to each other state if you choose action a. If you have

such a model, you can clearly plan your future, but you can also learn more efficiently, as the model places strong constraints on

possible explanations of sensory data. If the cake is burnt, it is unlikely to be due to the extra spoonful of sugar.

LEARNING SET

Learning set describes accrued knowledge from prior tasks that allows for stereotyped learning on new tasks. If an animal arrives

at a new task equipped from prior tasks with a model of the task, or even with a parsimonious state representation, they will learn

the new task much faster. In Harlow’s example, this learning set came from prior experience of the exact same task, but it is clear

that knowledge can be generalized across different tasks that share features (Figure 2F). Faced with a screwdriver, it is likely ad-

vantageous to have learned to open a bottle.

META-LEARNING

Meta-learning is themachine learning term for learning set, whereby features that are common amongmany tasks are exploited to

speed up learning on a particular task instance. There are a number of approaches to meta-learning. One example is meta-rein-

forcement learning (meta-RL), in which meta-learning is driven by reward prediction errors. More general forms of meta-learning

might also be driven by sensory observations. In machine learning, meta-learning can be used to tune synaptic weights but also to

tune neural architectures, resulting in interesting parallels with learning over the lifespan and adaptation over evolutionary time-

scales, respectively.

FACTORIZED REPRESENTATIONS

For a learning set, separating the structural representation from the representation of sensory particularities of the task facilitates

reusing the structural representation in related tasks. Factorization is one way to achieve this separation. Here the probability dis-

tribution of the task is a product of two independent distributions describing the structural and sensory contributions: Pðrsensory;
rstructureÞ = PðrsensoryÞPðrstructureÞ
Having learned both component distributions, flexible generalization can bemade to entirely new task conjunctions; for example, a

different arrangement of sensory events (Figures 8A and 8B). Such representations are reminiscent of the separation of structural

from sensory information in the cortices surrounding hippocampus (Figure 8C) and are consistent with the reuse of structural in-

formation across different rooms in remapping experiments in medial entorhinal cortex (but not hippocampus) (Figure 3A).

BASIS REPRESENTATIONS

If learning set can act across different tasks, then the representation of themodel cannot be a hardcoded state diagram. It must be

flexible such that new tasks can be constructed from combinations of elements of old tasks. These are termed bases and should

(Continued on next page)
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Box 2. Continued

represent common features of tasks in a manner that allows flexible recombination. This broad definition encompasses bases for

how features should be combined into a state definition (different bottle tops should imply different states) but also bases for com-

mon patterns of transition structure in the world (1D, 2D, tree, etc), and for how state features impact on this transition structure

(animals tend to approach interesting objects and are unlikely to walk through walls). These last two types of bases appear to have

commonalities with entorhinal cell populations.

EIGENVECTOR BASIS

One important basis representation is the eigenvector basis, as it is the linear basis that explains the most variance in the data per

basis function (or cell!) and is therefore a particularly efficient way to represent the structure of a task. An interesting recent obser-

vation is that the eigenvectors of the transition function of 2D space have strong similarities to grid cells (Figure 5).

STRUCTURAL INFERENCE

When encountering a new task, animals should infer what structural knowledge they should use to guide their decisions. They can

do this either by inferring structure by observed sensory features (in a restaurant, it is likely that the eating will follow the sitting), or

inferring structure from observed transitions (what is next in the sequence: 2,4,6,8,10,. ?), or a combination. In reinforcement

learning, the inferred structure can be used to define the possible state spaces and constrain the possibilities of relations between

different states while learning the state space of a new task. In this paper, we suggest that having an explicit representation of

structure (in the form of structural bases) can help in solving such inference problems and, therefore, in learning new state spaces.
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non-spatial scenarios where humans and animals can make

structural inferences with no prior experience of a problem?

To find them, we don’t have to look far, either in topological

complexity or in neural anatomy. If animals are independently

taught that they should choose stimulus A over B and B over C,

they will infer that they should choose A over C on first presenta-

tion—a phenomenon known as transitive inference (Burt, 1911;

DusekandEichenbaum,1997; vonFersenet al., 1991;McGonigle

andChalmers, 1977; Figure6A). Inprimates, such listscanbe long

(e.g., ABCDEFG), and can be flexibly reconfigured—for example,

stitched together by presentation of the critical link (Treichler and

Van Tilburg, 1996). Similarly, animals can stitch together tempo-

rally distinct episodes into a linear time representation and use

this representation to make causal inferences. In a sensory pre-

conditioning paradigm, for example, animals are taught that

A leads to B and later that B leads to reward (Jones et al., 2012).

When they are later asked to choose between A and a control,

they choose A—the stimulus that implies a path to reward. While

it is possible to solve both of these tasks by simpler associative

mechanisms, in the case of transitive inference, at least, evidence

strongly suggests that animals instead relyonabstract knowledge

of the linear structure (Gazes et al., 2012; Jensen et al., 2015,

2017; Lazareva and Wasserman, 2012). For sensory precondi-

tioning, the jury is still out in animals, but any reader who was

able to decipher the plots of ‘‘Pulp Fiction’’ or ‘‘Kill Bill’’ from the

sporadic, interleaved, and often time-reversed episodes will

know the answer for humans (Figure 6E). Notably, both transitive

inference and sensory preconditioning require hippocampus (Du-

sek and Eichenbaum, 1997; Gilboa et al., 2014; Wikenheiser and

Schoenbaum, 2016), entorhinal cortex (Buckmaster et al., 2004),

and ventral prefrontal cortex (Jones et al., 2012; Koscik and Tra-

nel, 2012). For example, manipulations to any of these structures

will preserve an animal’s preference for A over B or B over C, but

abolish the preference for A over C (even though A has been re-

warded many times more than C) (Figure 6B).
What Experiences Have in Common
Why should the brain learn general structural representations

rather than build a new representation for each task? For this

to be a useful strategy, there must be regularities in the world

that can be profited from. And indeed there are; the world is

brimming with repetition and self-similarity at every level of

abstraction (Figure 6). Knowledge can be generalized about ob-

jects and concrete entities—if you find a fish in a lake, it’s worth

checking other lakes for fish; or about transition structures—

multiple rooms often lead from the same corridor; or about

the relationship between objects and transitions—if you reach

a sad point of a film, you are probably about half way in. Repe-

titions exist in the relationships between objects—if two people

are friends on Facebook, they probably follow similar people on

Twitter (Figures 6C and 6D). Crucially, the structures that orga-

nize these self-repetitions often themselves repeat across na-

ture (Kemp and Tenenbaum, 2008). Tree-like organization, for

example, can be found in families, in rumor mills, and even in

trees. ‘‘Small-world’’ and ‘‘scale-free’’ properties are found in

complex systems across the natural world (Watts and Strogatz,

1998).

Across life, then, a learner faces a distribution of tasks

(Figure 7A), and this distribution is not random but highly struc-

tured. Each new task can be constrained by rich prior informa-

tion from previous tasks. Harlow’s ‘‘learning set’’ is a clear,

controlled example. In Harlow’s experiment, what is random-

ized between episodes is the identity of each object, while

what is constant is the relationship between object and reward.

Harlow’s interpretation of ‘‘learning to learn’’ was that past

experience drove the acquisition of abstract structure—for

example, the fact that ‘‘one of the two objects is always re-

warded’’—and this learned representation made future learning

more efficient.

Recent approaches in artificial neural networks have demon-

strated that, with enough experience, powerful and general
Neuron 100, October 24, 2018 499
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Figure 5. Unifying Spatial and Non-spatial Representations under a Common Framework
(A) Reinforcement learning can offer a fresh perspective on spatial cognition by considering locations as states. For example, a linear track can be thought of as a
series of neighboring states. This 1D topology can be represented in a states-by-states transition matrix T, with element Ti,j corresponding to the probability of
transitioning from state i to state j. Thus, this matrix represents structure. Indeed, multiplication of the current state, s, by Tn gives a distribution over state
occupancy n steps into the future. Notably, eigenvectors of this transition matrix are periodic, suggesting that they contain non-local knowledge about the
structure that may be useful for computing distances (see C).
(B) Grid-cell-like firing fields can be obtained by casting 2D space under this state-space framework. The eigenvectors of the covariance of 2D-distributed place
cells (obtained by non-negative principal component analysis, PCA), of 2D transition matrices, and of successor representations of 2D state spaces are all
grid-like, as are units of an artificial neural network (ANN) taskedwith predicting 2D-distributed place cells (PCs) and head-direction cells (HDCs). Figures adapted
from Dordek et al. (2016) (left), Stachenfeld et al., (2017) (middle) and Banino et al., (2018) (right).
(C) These grid-like representations embed structural knowledge of the relationships between states. Since the eigenvectors of T are also the eigenvectors of the
successor representation, they can be used to compute approximate distances between all pairs of states, which can be used to facilitate planning (top: element
i,j of the matrix is the distance between state i and j; lighter color denotes larger distance). Grid codes provide a basis for vector-based navigation (Bush et al.,
2015), allowing the ANN with grid-like units to take shortcuts (bottom) (Adapted with permission from Banino et al., 2018).
(D) By using representations that, rather than encoding current location, are predictive of successive states (successor representation), it is possible to explain
policy-dependent phenomena in the hippocampal formation. For example, if an animal moves only one way down a linear track, successor representations skew
toward the start of the track to predict their future state, as observed in hippocampal place cells. Figure adapted from Stachenfeld et al., (2017).
(E) This same framework can explain the neural representation in hippocampus and entorhinal cortex of a discrete, non-spatial state space. The true underlying
graph structure of this state space can be reconstructed from neural activity, suggesting that these regions represent discrete as well as continuous tasks.
Figure adapted from Garvert et al., (2017).
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structural representations can emerge from simple principles. In

the following sections, we will highlight some of these principles

that seem particularly relevant to the neuronal representations

and anatomical constraints that can be found in the frontal cortex

and hippocampal formation.
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Learning Structure from Experience
Deep learning techniques can learn powerful representations of

tasks that closely resemble biology (Mante et al., 2013; Sussillo

et al., 2015; Yamins and DiCarlo, 2016), and there are several

approaches for adapting these techniques to learn structural
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Figure 6. Transitive Inference and Structural Constraints on Inference
(A) Breakdown of experience, inference, and choice at test time in spatial navigation and transitive inference relies on chaining together separately observed
sequences of observations.
(B) Dusek and Eichenbaum (1997) show that transitive inference is hippocampus dependent in rats. Rats were trained on pairs of consecutive stimuli in which the
rewarded stimulus on each trial followed the order A > B > C > D > E. If the animal represents the stimulus order rather than simply the results of the experienced
pairs, it can correctly infer that B should be preferred over D. Control animals make this inference correctly, while animals with lesions that separate hippocampus
from cortex are impaired on these relational probes.
(C) Illustration of mazes that permit different types of structured inferences. In maze 1, neither of the first two trajectories traverse the shortest path solution;
however, pieces from the traversals can be joined to compose the shortest path. In similarly structured maze 2, the observed trajectories are insufficient to
compose the shortest path. However, the loop closures suggest topological similarity to the previously observed maze 1. This similar, previously experienced
relational structure can be used to constrain inference in the new maze with a representation that factors observation from underlying structure.
(D) Prior experiencewith topological features can be used to constrain inference in non-spatial environments aswell. For instance, exposure to the abstract notion
of a ‘‘high-degree node,’’ which arises in many different types of social networks, can be used to draw conclusions about the role of a high-degree individual in a
novel network. For instance, a queen bee, the Queen of England, and Beyoncé (‘‘Queen Bey’’) are members of very different social networks, but fill a similar role
of influence relative to other individuals in the network.
(E) Humans can fluidly chain together episodes experienced out of order into a continuous narrative. This is elegantly illustrated by an artist’s depiction of the plot
of Kill Bill, volumes 1 and 2 arranged in chronological order (Noah Daniel Smith, www.noahdanielsmith.com). Although scenes of Kill Bill are seen out of order,
such that early scenes depicting some event are qualified by later scenes depicting an earlier event, a viewer can integrate these scenes into a coherent narrative.
Other films with this property include Memento and Pulp Fiction (www.noahdanielsmith.com/pulpfiction/).
(F) ‘‘Lines of cars’’ by Max Behrens, aged 2. Organization within each line suggests that structures can be placed within other structures. This organization is
readily visible in the left-hand line, but will be most apparent in the right-hand line to readers with domain expertise in the Disney film series ‘‘Cars.’’
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knowledge. These are collectively referred to as meta-learning

(Andrychowicz et al., 2016; Finn et al., 2017; Hochreiter et al.,

2001); one with a tantalizing link to brain function is meta-rein-

forcement learning (meta-RL) (Wang et al., 2018; Box 2).

Meta-RL solves the reinforcement learning problem (maxi-

mize expected task reward) with a recurrent neural network

(RNN) whose weights are trained through a reward prediction

error signal (Figure 7B). The critical insight, however, is that

the network does not need to change its weights to react to re-

wards and errors in solving the current task. Such reactions can

instead be encoded in the dynamics of the network—because

an RNN can provably implement any algorithm (Siegelmann

and Sontag, 1995), it can implement an RL algorithm if it is

trained to do so. The network weights are then trained to

maximize reward over many different tasks by setting a learning

rate that is too slow to accommodate learning within a single
task, but that is appropriate to average experience across

many tasks.

The consequence of this is that the reward prediction error

signal drives the weights to encode the structure that is common

across episodes rather than information about any particular

sensory inputs. The activation dynamics of the network can

then profit from this structure to produce rapid learning in each

task. For example, in Harlow’s task, like the human and non-hu-

man primates, after many training episodes the network can

learn to solve the problem in one trial (Figure 7C). In other exper-

iments, Wang et al. (2018) also found that meta-RL learned

abstract notions about the dynamics of the environment inde-

pendent of its current state and used these to learn more effi-

ciently from new experience.

This observation provides a potential solution to an intriguing

conundrum in the neuroscience of reinforcement learning.
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Figure 7. Meta-Learning and Meta-
Reinforcement Learning
(A) A learner faces a distribution of tasks that share
common underlying structure. Consider again the
Harlow task. In any individual episode, the actual
sensory-motor-reward contingencies are such that
there are many possible algorithms that would work
to obtain reward. For example, ‘‘always choose the
blue object,’’ or ‘‘choose the left object unless the left
object is different from last time and the square ob-
ject is on the right,’’ etc. (black arrows). However, the
only thing that is common across all of the different
task episodes is ‘‘one of the two objects is always
rewarded’’ (red arrow). This common structure is
what meta-learning seeks to acquire, to facilitate
future learning. With a slow enough learning rate,
such that individual task episodes do not dominate
the learning, the result is that a solution can be
learned that works for all tasks.
(B) One method for performing meta-learning is
meta-reinforcement learning (meta-RL). The meta-
RL architecture fromWang et al., (2018) consists of a
prefrontal network (PFN) modeled as a recurrent
neural network (RNN) with synaptic weights adjusted
through anRL algorithm (driven by dopamine, DA). At
each time step, the agent receives the current
observation o and the past action a and reward r,
which are fed into a recurrent neural network that
outputs an action and state value estimate v. This
RNN learns to use its activation dynamics as a sec-
ond, free-standing RL algorithm adapted to the task
distribution on which it is trained.
(C) Through training, meta-RL learns to learn faster
on Harlow’s task, similar to the monkeys in
Figure 2B. Figure adapted from Wang et al., (2018).

(D) Meta-RL provides a possible explanation for how individual units in PFC become tuned to various task-related variables. Proportion of recorded neurons in
macaque PFC with sensitivity to last action, last reward, action-by-reward interaction, and current value (Tsutsui et al., 2016). Inset: for each unit in the trained
meta-RL agent, strength of correlation is shown with the same variables. Adapted from Wang et al., (2018).
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Dopamine signals a reward prediction error that is assumed to

cause learning but, in prefrontal cortex at least, triggers synaptic

change over thewrong timescale—tens of seconds at the fastest

(Brzosko et al., 2015; Otmakhova and Lisman, 1996; Wang et al.,

2018; Yagishita et al., 2014), when behavior can change within a

few seconds or less (i.e., the animal gets a reward and immedi-

ately changes its behavior). Meta-RL proposes that, instead of

driving learning directly, the role of dopamine is to drive changes

in the learning algorithm; this learning algorithm is implemented

in the recurrent circuits particularly centering on the prefrontal

cortex.

Consistent with this, when the meta-RL agent is trained on

typical reward learning tasks, individual units in the network ac-

quire tuning properties that resemble individual PFC units re-

corded in monkeys in the same task. For example, in a foraging

task, Tsutsui et al. (2016) found a variety of units in macaque

PFC, with some coding predominantly for value, others for pre-

vious action, others for reward, and still others for an action-

by-reward interaction. When meta-RL was trained to perform

the same task, individual units in the artificial network spontane-

ously acquired tuning for these variables, with a similar distribu-

tion to the monkey neurons (Tsutsui et al., 2016; Figure 7D).

Factorization and Constraints—How Should Structural
Knowledge Be Represented?
It is of course possible to represent relationships between ob-

jects in an implicit fashion—encoded in the synaptic weights be-
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tween object representations. For example, in sensory precondi-

tioning, one can easily imagine scenarios in which cells that form

the representation of object A form new synaptic connections to

those that encode object B. Indeed, such mechanisms likely do

exist in the brain (e.g., in Grewe et al., 2017). However, in order

for a structural abstraction (such as the linear order in transitive

inference and sensory preconditioning or the 2D layout of phys-

ical and bird space) to generalize from one task to another, its

representation must be explicit—divorced from the sensory

properties of the particular task in question, and should be in a

form that allows it to impose its constraints on any new sensory

environment (Box 2). One way to enforce such a representation

mathematically is to require representations to factorize,

such that the probability distribution of activity for a task event

is the product of two independent distributions defining the sen-

sory and structural contributions to the task. Mathematically,

this is:

P
�
rsensory; rstructure

�
=P

�
rsensory

�
PðrstructureÞ

where the probability is, for example, defined over the spiking

(r) of each neuron in the representation. Factorization facilitates

learning because it dramatically reduces the dimensionality of

the representation to be learned and allows extreme forms of

generalization outside of the training data. For example, if you

want to predict how your daughter will react to a blue cup, you

can learn the blue distribution from all blue things (not just
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Figure 8. Factorized and Conjunctive Codes
(A) Entities in theworld can be factorized into independent distributions defining the dimensions of these entities. For example, different objects may be factorized
according to how ‘‘cuppy’’ they are as well as their color.
(B) Factorization allows generalization to as-yet-unseen conjunctions. For example, it is easy to imagine young children with unusual color preferences, such as
Max and Lana (Min) Behrens.
(C) The functional representations in the hippocampal-entorhinal system are suggestive of factorization and conjunction. In the hippocampal inputs, medial
regions code structure devoid of sensory information, lateral regions code sensory information devoid of structure. These are combined in a conjunctive code in
hippocampus. Figure adapted with permission from (Manns and Eichenbaum, 2006). HPC, hippocampus; MEC, medial entorhinal cortex; LEC, lateral entorhinal
cortex; PER, perirhinal cortex; POR, postrhinal/parahippocampal cortex.
(D) Denotes this separation in a simple task environment containing a graph with different objects at the vertices.
(E) An artificial neural network that explicitly encourages factorized and conjunctive codes learns units with properties similar to grid and place cells. Units
representing the structure of the environment—in this case, a 2D topology—have periodic firing fields similar to grid cells (a square rather than triangular lattice is
learned due to a four-way connected space). Units coding for the conjunction between the learned structure and sensory events exhibit remapping similar to
place cells. Adapted from Whittington et al., (2018).
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cups) and the cup distribution from all colors (not just blue)

(Figure 8A). Using these two independent distributions, you can

predict conjunctions you have never experienced (Figure 8B).

Similarly, if the representation of a line is factorized from the rep-
resentation of the elements of that line, it can be learned across

many different tasks and generalized to new ones.

These considerations are intriguing when considering the

cellular representations that can be found in the hippocampal
Neuron 100, October 24, 2018 503
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formation and its inputs (Manns and Eichenbaum, 2006;

Figure 8C). In the brain regions that precede hippocampal activ-

ity by one or a small number of synapses, representations are

separated (factorized) into structural (spatial or contextual) rep-

resentations in medial regions and sensory (object) representa-

tions in lateral regions. By contrast, hippocampus proper con-

tains conjunctive representations of object in structure. Cells

are only active for a particular object in a particular location,

but not for the object or location alone (Komorowski et al.,

2009; Wood et al., 1999). This difference between factorized

and conjunctive representations is most clearly demonstrated

in remapping experiments (see Figure 3)—the structure of space

remains the same but sensory inputs change. Accordingly, hip-

pocampal place cells, but not entorhinal grid cells, lose their cor-

relation structure (remap). While the conjunctive hippocampal

representation is sufficient to fully represent the current episode

(importantly for memory), cortical regions that summarize

the statistics of these episodes (McClelland et al., 1995) do

so in a factorized, data-efficient manner that can be conjoined

in hippocampus to represent episodes that have never been

experienced.

By modeling such a factorized system in a neural network, it is

possible to examine the properties of the structural representa-

tions (Whittington et al., 2018). Just like the rodents we dis-

cussed earlier, when tasked with predicting the next sensory

event in a 2D random walk, the network can profit from knowl-

edge of the 2D spatial structure; for example, it can know (infer)

such things as: if I go up, left, down, and right, I will be back in the

same place. This allows for correct predictions of sensory events

when revisiting states, even when approaching from an entirely

new direction—knowing the structure means knowing where

you are in the space. To do this, the network must learn a factor-

ized representation of the structure. This structural representa-

tion can then be combined with sensory events in a conjunctive

code to form different memories at different places in different

rooms. The learned structural representations include periodic

cells (similar to grid cells) (Figure 8E, top), but also cells that

resemble band cells and boundary vector cells. Since sensory

events may occur in different locations in different rooms, the

conjunction between a given sensory event and the structural

representation may be in a different location across rooms.

Therefore the conjunctive units naturally exhibit remapping

(Figure 8E, bottom) analogous to the firing of place cells in

different environments. It is possible, then, that at least some

of the cell types that make up the rich spatial representation

in the hippocampal formation can be accounted for by

structural considerations that generalize to arbitrary, non-spatial

problems.

Structural Bases and the Hippocampal Zoo
We have argued that repeating structural constraints on tasks

should be embedded explicitly in the neural code and that ento-

rhinal cells provide examples of such a representation. For sim-

ple tasks (such as reversal learning or object discrimination), it is

possible for the brain to represent the exact transitions from one

state to the next, but this strategy will break as soon as anything

changes in this structure. For example, the appearance of a

shiny object dramatically changes the transition statistics of all
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tasks if you are a magpie. More prosaically, although boundaries

always have the same effect on transitions, they might do so in

different parts of the state space in different environments.

One solution to this problem is to think of the entorhinal cells

as a basis set (Box 2) for describing the current transition struc-

ture, so that different combinations of cellular activity can repre-

sent the different structural constraints of different environments

(similar to how cells in primary visual cortex represent a basis for

describing the pixel distributions in natural images; Olshausen

and Field, 1996). These bases will capture common features

across tasks, and while the most reliable of these features will

be most strongly represented (such as the translational and

scale invariance of grid cells), there will also be more minor rep-

resentations of features that have less prominent structural influ-

ence (such as boundary vector cells and object vector cells that

may reflect the alterations of transition probabilities caused by

the animal’s tendencies to approach objects and run along

boundaries). Indeed, recent evidence suggests that activity in

many entorhinal cells that are hard to classify into easily inter-

pretable cell types are nevertheless linearly predictive of task-

relevant behavioral variables (Hardcastle et al., 2017). When

starting a new task, the recurrent neural network in the entorhinal

cortex may represent an initial guess at the task structure, from

which the hippocampus can form conjunctive codes and mem-

ories. With task experience, a more appropriate weighting of the

basis functions can be inferred, and thus task structure more

correctly approximated (Barry et al., 2012). This interpretation

is consistent with the strong attractor dynamics apparent in the

grid cell network (Burak and Fiete, 2009) as grid cells embed

the relationships that are the most prevalent among spatial

tasks. Given known hippocampal involvement in primate behav-

iors with markedly different statistical structure from space (such

as social tasks), it is possible that other statistical features are

also similarly deeply embedded.

What Should Be Built by Evolution, and What Should Be
Learned from Your Environment?
Learning about structure and assuming constraints are highly

complementary. The more abstract (further from observations)

a structure is, the harder it is to learn (Raghu et al., 2016), but

such abstractions can be easily hard-coded by evolution. For

example, the factorization of relationships from objects in the

cortical code immediately bestows the abstract principle that

‘‘different pairs of objects might have relationships in common.’’

To obtain such an abstract bias with meta-learning alone can be

extremely difficult, because it’s hard to make such a diverse task

distribution that this principle is the only thing the tasks have in

common. Indeed, modern machine learning techniques are

exploring how to hard code these abstract biases into artificial

neural networks. For example, the current state of the art in Star-

craft II (a multiplayer real-time strategy game set in a distant part

of the Milky Way) was achieved by adding a relation network

component that employs exactly this principle (Zambaldi et al.,

2018). By contrast, meta-learning is better suited for discovering

complex biases that are difficult to program directly, and which

may be unexpected properties of task families of interest.

These two different strengths play well together. Starting with

abstract architectural biases can make other, more specific or
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complex biases easier to meta-learn (Zambaldi et al., 2018) and

can encourage more generalizable structural representations to

emerge. Indeed, the representations learned in the factorized

network described above (Whittington et al., 2018) are basis

functions (as are those found in Banino et al., 2018), which gener-

alize to environments of different sizes. Pure meta-learning

without any inductive biases, however, may require a broader

task distribution to learn such generalizable representations.

Thus, evolution should provide architectural biases that facilitate

generalizable structure learning.

It is still unclear how much of the bias observed in the brain—

like a belief in relational structure—is completely hard-coded

versus learned through early life experience. It is of course

possible that particular structural constraints that apply broadly

across natural tasks (such as 2D maps, ordinal lines, and hierar-

chies) have been favored on evolutionary timescales and

are therefore hardwired into cortical connectivity. Such an argu-

ment might explain the precise anatomical arrangement of grid

cell modules along the dorsal-ventral axis of entorhinal cortex

(Brun et al., 2008).

Implications for the Cognitive Map
In the remainder of this perspective, we would like to take a

more speculative position and consider what implications the

structural abstractions we have discussed above might have

on the ‘‘systematic organization of knowledge’’ that Tolman

envisaged. This organization clearly encompasses much more

than the representation of structural abstractions, but these

structures constrain how concrete objects and actions will be

combined. These constraints not only allow objects to be

configured into meaningful current or future events, but also

provide a powerful means to generalize learning from sparse

observations.

Inferential Planning
In both machine learning (Kocsis and Szepesvári, 2006; Silver

et al., 2016; Sutton and Barto, 1998) and neuroscience research

(Daw et al., 2005, 2011), it is often assumed that planning your

future involves searching through a tree of possible states and

discovering the best one. This process is so costly as to be

impossible in most reasonable circumstances, so an alternative

is to estimate a cached value of states that are your immediate

neighbors or neighbors to some depth (Huys et al., 2015; Kera-

mati et al., 2016). Armed with structural knowledge, however, it

is possible that plans can be built into representations in an anal-

ogous fashion to the representation of objects on transitive-infer-

ence lines. The planning process now becomes an inference of

what should go where on the line. This inference is further con-

strained by domain-specific structural knowledge of relation-

ships between items. When planning a lab, a PI does not search

through every possible arrangement, but instead knows that

they should hire the theorist before the experimentalist to avoid

wasted experiments, and the experimentalist before the data

scientist to avoid twiddled thumbs. By constraining the repre-

sentations of the different objects (postdocs!) by this relational

knowledge, the number of possible futures are limited. If similar

structural knowledge (A relies on B) has been used in previous

plans such as building a house (foundations, walls, windows)
then all that is necessary to build the new plan is for the object’s

representation to contain information about which other objects

this structural knowledge applies to. The new plan can then be

generalized (inferred) from the old. This idea is an extension

of ideas in psychology, where object representations are

assumed to encompass possible actions that the object ‘‘af-

fords’’ (Gibson, 1966). The representation of the word ‘‘apple,’’

for example, might include activity that represents the facial

movements required to eat it and the hand position required to

grip it. In this way, infinite possible actions are reduced to only

a few likely ones conditioned on the objects currently available.

Placed together with structural and relational knowledge,

however, such representations would provide dramatic con-

straints on possible long-term futures and powerful generaliza-

tions to novel scenarios. While there is little experimental evi-

dence along these lines to date, it is notable that what

evidence there is centers on the hippocampus and ventromedial

prefrontal cortex. These regions are active during both recon-

structive memory and constructive imagination (Buckner and

Carroll, 2007), and without these regions, people can’t construct

imagined futures (Hassabis et al., 2007). Indeed, when subjects

imagine the taste of a new food that they have never experienced

but is constructed from known ingredients (such as Tea-Jelly),

both regions show evidence that cellular ensembles for the

ingredients are active simultaneously (Barron et al., 2013).

The examples above give a sense of the power of combining

different structural representations (here, lines and reliances)

and of the same structural representations being generalized

across domains. The logic is similar in spirit to arguments

made about the compositional nature of human visual under-

standing, where known elements can be composed into new

objects that can be immediately understood with no prior expe-

rience (Lake et al., 2015, 2017). This analogy, however, highlights

the importance of a feature of structural coding emphasized in

earlier sections. In order for structures to play a role in composi-

tional planning analogous to objects in compositional vision,

they cannot be encoded solely in the synaptic weights between

object representations. They must be represented explicitly, as

are the objects that they act upon. Indeed this blurring of the

line between objects and structures is a powerful feature of

human cognition, allowing us to reason about structures and

relationships. A marriage, for example, is a concrete event—or

a structure for organizing our social knowledge—or a profound

set of constraints on future behavior.

Structural Inferences for Generalized Learning
It is possible, then, for futures to be inferred (or generalized)

rather than planned. By corollary, sparse observations can

cause profound learning when constrained by structural knowl-

edge. When reports of Austrian nobles crossing the Pyrenees

reached Louis XIV of France, he was able to use the same struc-

tural relation (A relies on B—here, wedding relies on guests) to

infer a proposed alliance between the Spanish and Holy Roman

Empires. His subsequent plan to detain the bride-to-be at Ver-

sailles (inferred, presumably, from the same relationship applied

to brides rather than guests) led to the War of the Spanish Suc-

cession (at least in the BBC’s interpretation; BBC, 2018). By

filtering experiences through a scaffold of relational knowledge,
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precise inferences can be drawn from little data (Lake et al.,

2015).

If structures and relations are represented explicitly, however,

there is the potential for inference at dramatic levels of abstrac-

tion. The social experience of watching a parent cajoling a child

to new bravery, for example, can be replicated even when peo-

ple or animals are replaced with abstract shapes (Heider and

Simmel, 1944). The dynamic relationship between the two trian-

gles on the screen is sufficient for us to infer the roles of parent

and child and the motives and emotions of each. As with the

non-spatial grid cells described earlier, a structure (albeit a

more complex and dynamic one) that is evolved or learned to

describe the behavior in one setting can be generalized to a

completely different domain. While it might seem initially myste-

rious why there is an evolutionary benefit to infer social dynamics

between triangles, or 2 dimensions of birds, it is clear that the

ability to infer structural analogies between disparate situations

has profound consequences for learning. Getting saved by a bi-

cycle helmet might, for example, make you more likely to wear a

safety jacket next time you are on a boat, or to take out home in-

surance next time you are at your computer. In modern artificial

intelligence research, there is a substantial effort to discover

learning rules that ensure ‘‘continual learning’’—that is, learning

rules that enable new tasks to be learned by networks without

destroying old ones (Kirkpatrick et al., 2017; Zenke et al.,

2017). In our view, structural abstractions and inferences are a

key element to this endeavor.
Conclusion
It takes a particularly dramatic form of selective attention to be a

cognitive neuroscientist. When a subject walks into the labora-

tory, reads a complex set of instructions and effortlessly trans-

lates them into a complex sequence of future events and actions

to be performed inside a 13-tonne sarcophagus that they happily

enter because a stranger has told them it is safe, it takes an un-

usual degree of restraint to choose to study neural activity when

the same subject receives payments that differ by 15 pence.

When animals in the wild are capable of building sophisticated

networks of burrows, for example, or allegiances, it takes a

similar degree of focus to choose to study how they navigate

an open 1 m square or whether they prefer one stimulus to

another after several months of training. This selective attention

has, however, been profitable, because it has allowed experi-

ments to be performed in a theoretical framework where they

can build on one another in a formal sense. We envisage that

the nascent emergence of formalisms to describe more com-

plex, flexible behaviors will, similarly, provide a framework for

profitable experiments in this broader behavioral sphere and

further encourage the exciting re-emergence of collaborations

between protagonists of artificial and biological intelligence.
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