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One of the unsolved problems in the ®eld of human concept
learning concerns the factors that determine the subjective dif®-
culty of concepts: why are some concepts psychologically simple
and easy to learn, while others seem dif®cult, complex or inco-
herent? This question was much studied in the 1960s1 but was
never answered, and more recent characterizations of concepts as
prototypes rather than logical rules2,3 leave it unsolved4±6. Here I
investigate this question in the domain of Boolean concepts
(categories de®ned by logical rules). A series of experiments
measured the subjective dif®culty of a wide range of logical
varieties of concepts (41 mathematically distinct types in six
familiesÐa far wider range than has been tested previously).
The data reveal a surprisingly simple empirical `law': the sub-
jective dif®culty of a concept is directly proportional to its
Boolean complexity (the length of the shortest logically equivalent
propositional formula)Ðthat is, to its logical incompressibility.

How human learners extract rules from patterns of data, and the
relative subjective complexity of different kinds of rules, is central to
investigations of human learning. When classifying novel stimuli,
humans tend to seek simple rules rather than prototypes7. Sub-
jective complexity has a central theoretical role in popular rule-plus-
exception models of concept learning8, and more generally in
debates on the nature of learning9,10, where it is often argued that
examples failing to obey some `simple' primary rule might be stored
in an alternative manner, for example, verbatim. Earlier research
focused on an extremely limited variety of logical forms, virtually
exclusively comprising concepts de®ned with only two features.
Most research considered just two types of logical rule, conjunction
and disjunction, with one empirical resultÐthat conjunctive
(`and') concepts are learned more easily than disjunctive (`or')
onesÐdominating discussion. One early report11 suggested a role
for logical complexity, but this proposal was never followed up.
Most theoretical accounts since then1,8,12,13 have taken the subjective
preference for conjunctive concepts as axiomatic; usually this is the
only principle invoked pertaining to logical form. But no indepen-
dently motivated explanation of it has ever emerged.

One study, that of Shepard, Hovland and Jenkins14 investigated
concepts with three features. Their stimulus classi®cation and basic
empirical result provides the motivation for my study. Shepard et al.
considered Boolean concepts de®ned over three features with four
positive and four negative examples. Such concepts fall into six
logical types, designated I±VI (the SHJ types). All concepts with
three features and four positive examples are isomorphic to one of
the six types, but no example of one type is isomorphic to one of a
different type, making this a complete classi®cation. Illustrations of
the six types can be found in Table 1 in the subtable labelled
3[4] (the notation is explained below). Shepard et al. found
that the types differed in subjective dif®culty in the order
I , II , �III; IV;V� , VI, with types III, IV and V having approxi-
mately equal dif®culty. This basic empirical pattern has been much
discussed and occasionally replicated since8,15, but while it has been
modelled by simulations involving many free parameters, it has
resisted any simple or elegant theoretical explanation.

When the SHJ types are considered from the perspective of
mathematical logic, however, a simple explanation of the dif®culty
ordering emerges: the dif®culty of the six types is precisely predicted
by their Boolean complexity. The Boolean complexity of a proposi-
tional concept is the length of the shortest Boolean formula logically
equivalent to the concept, usually expressed in terms of the number
of literals (positive or negative variables)16,17. (For convenience, I
write a ^ b as ab, a, a _ b as a � b, and :a as a9.) For example, the
concept ab � ab9 is equivalent to a�b � b9� and thus to a, and hence
has Boolean complexity 1; whereas ab � a9b9 has no shorter
equivalent, and hence has Boolean complexity 4. Like Kolmogorov
complexity18±21, Boolean complexity is an essentially universal
measure of the intrinsic mathematical complexity or `incompressi-
bility' of the propositional concept16. Finding the shortest formula
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Figure 1 The D[P] hierarchy, showing the number of cases (D [P]) in each family. The

hierarchy extends in®nitely to all values of D, and all values of P less than or equal to 2D-1.

Families in the bold box are those tested in the experiments. Family 3[4] is the one

originally considered by Shepard et al.14.
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found in Supplementary Information.
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equivalent to a given formula is computationally intractable22, and
in practice Boolean reduction can only be achieved through
approximate computational techniques (such as factorization, as
illustrated in the example).

Now consider an arbitrary Boolean concept de®ned by P positive
examples over D binary features (for example, in the six SHJ types,
D � 3 and P � 4). Any such concept is logically equivalent to the
disjunction of its P constituent objects, each of which is a conjunc-
tion of D features, a form known as a disjunctive normal formula
(DNF). Hence, each such concept is equivalent to a DNF with DP
literals. For example, each of Shepard et al.'s six types is equivalent to
a formula of length 12 (� 3 3 4). The DNF is the completely
`uncompressed' form; it in effect lists verbatim all the objects that
satisfy the concept. When each of the SHJ types is compressed as
much as possible (again, using heuristic techniques), they have
lengths 1, 4, 6, 6, 6, and 10, respectively (Table 1, section 3[4], gives

all the full DNFs and minimal formulae). These Boolean complexity
values predict the order of empirical dif®culty precisely. This exact
correspondence has not previously been noted, though Shepard
et al. speculated about it in their original paper14, and the relation
between Boolean complexity and human learning has never been
comprehensively tested.

To investigate more thoroughly the role of Boolean complexity in
learning, the next natural step is to extend the range of propositional
concepts beyond Shepard et al.'s original six. Those six cases exhaust
all possibilities with D � 3 and P � 4; an obvious extension is to
consider different values of D, P, or both. Such changes lead to
completely different classi®cations. For example, with D � 3 and
P � 3 there are three cases, each necessarily distinct from any of the
six used by Shepard et al.

Varying both D and P de®nes a parametric system of families,
each analogous to, but different from, the SHJ family. I use the
notation D[P] to indicate the family of concept types involving D
features and P positive examples, and denote the cases within that
family by ID[P], IID[P] and so on. Under this notation, the SHJ family
is 3[4], and its six cases are I3[4], II3[4],¼,VI3[4]. Figure 1 gives the
number of cases |D[P]| for each family from D � 1 to 4 and for
P � 1 to 2D-1. Values of P larger than 2D-1 duplicate smaller values;
for example, a concept with three positives and ®ve negatives is
simply the converse of one with ®ve positives and three negatives,
and hence, has essentially the same form and the same complexity.

The D[P] hierarchy is completely comprehensive, in that it
encompasses the entire universe of propositional formulae. All
Boolean concepts fall into a family that appears somewhere in
(the in®nite extension of) Fig. 1, and all Boolean concepts are
logically equivalent to one somewhere on the (in®nite extension of)
Table 1. Hence, the D[P] complexity hierarchy is the natural testbed
in which to evaluate any psychological theory that makes reference
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Figure 3 Results by parity, collapsing over family. The 3[4] family is included with the Up

cases. These results should be interpreted with caution because the different families may

have different overall levels of dif®culty (controlled in part by the amount of learning time,

and only approximately equalized by the chosen levels).

Table 1 Details of two concept families tested in the experiments

Family* Case DNF Minimal formula Complexity Illustration
...................................................................................................................................................................................................................................................................................................................................................................

3[3] I3[3] a9b9c9 � a9b9c � a9bc9 a9(bc)9 3

II3[3] a9b9c9 � a9b9c � abc9 a9b9 � abc9 5

III3[3] a9b9c9 � a9bc � ab9c a9�b9c9 � bc� � ab9c 8

...................................................................................................................................................................................................................................................................................................................................................................

3[4] I3[4] a9b9c9 � a9b9c � a9bc9 � a9bc a9 1

II3[4] a9b9c9 � a9b9c � abc9 � abc ab � a9b9 4

III3[4] a9b9c9 � a9b9c � a9bc9 � ab9c a9�bc�9 � ab9c 6

IV3[4] a9b9c9 � a9b9c � a9bc9 � ab9c9 a9�bc�9 � ab9c9 6

V3[4] a9b9c9 � a9b9c � a9bc9 � abc a9�bc�9 � abc 6

VI3[4] a9b9c9 � a9bc � ab9c � abc9 a�b9c � bc9� � a9�b9c9 � bc� 10

...................................................................................................................................................................................................................................................................................................................................................................

For each type the Roman-numeral case label, disjunctive normal formula, minimal formula, Boolean complexity, and a schematic illustration of the concept as a set of vertices in Boolean D-space are shown.
Minimal formulae and complexity values are derived using heuristic minimization techniques, such as factoring (for details see Supplementary Information). All concepts with D features and P positives can
be created by taking one of these cases and permuting and/or inverting the axes in Boolean D-spaceÐequivalent to permuting the features and the parity of each feature. Ordering of cases within each
family is arbitrary.
* Family 3[4] is the original family from Shepard et al.14. For details of other families see Suplementary Information.
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to the logical structure of concepts.
The experiments below focus on six families: 3[2], 3[3], 3[4] (the

SHJ family), 4[2], 4[3] and 4[4]; that is, all concepts with three or
four features and between two and four positive examples, com-
prising 41 cases in the six families. Table 1 gives details of families
3[3] and 3[4]. Each concept (except in 3[4], where positive and
negative sets are the same size) was tested in two versions: an Up
version, in which the smaller set of objects was labelled `positive',
and a Down version, in which the larger set was labelled `positive'.
This factor, which is orthogonal to Boolean complexity (because
every concept f and its complement f9 have the same complexity)
will be referred to as parity.

Results are plotted in Fig. 2 (separated by family) and Fig. 3
(separated by parity). The main trend is that performance decreases
monotonically with increasing Boolean complexity, with an
approximately constant advantage for Up versus Down cases.
Together the complexity and parity effects explain about half of
the variance (R2 � 0:5017, F�2; 73� � 36:76, P , 0:0001). The
parity effect, which is clearly visible in all families, has antecedents
in the literature12,23±25. Again, this factor is orthogonal to complexity
and thus cannot be explained by complexity minimization.

My main conclusion is that subjective conceptual dif®culty is well
predicted by Boolean complexity. For each concept, learning is
successful to the degree that the concept can be faithfully
compressed26,27. However, complexity and parity alone do not
provide a complete account; there is substantial residual variance
in the data (especially in higher-dimensional cases, and in Down
cases in all dimensions) suggesting the in¯uence of some unknown
processing factors and strategies, which require future study.

The signi®cance of these results is best viewed from an historical
perspective. Concept learning research in the 1960s was largely
preoccupied by the dichotomy between conjunctive and disjunctive
concepts. In retrospect, much of the interest in this comparison
derived from the fact that it seemed to imply a divergence between
logical complexity, in which the two types are manifestly equal, and
psychological complexity, in which the two types differ markedly.
The contrast suggested a predominant role of extra-logical, and
hence perhaps more subjective and mysterious, factors.

But in the light of the current study, this conclusion seems to have
been premature. In the D[P] classi®cation, conjunction ab and
disjunction a � b represent the same case, I2[1]; conjunction is the
Up version (one positive) and disjunction is the Down version
(three positives). That is, conjunction and disjunction are iso-
morphic, in that each divides Boolean 2-space into one vertex
versus the other three; in conjunction the one is labelled positive
and the rest negative, in disjunction the reverse. (Conditional a ! b
is also of the same type.) All other propositional concepts studied in
the literature (again, apart from ref. 14) are bivariate concepts
falling into the 2[2] family, which has only two cases, each appearing
in two complementary versions: af®rmation a and negation a9
(both I2[2]); and biconditional a $ b (that is, a9b9 � ab) and
exclusive disjunction ab9 � a9b (both II2[2]). Conjunction/disjunc-
tion, af®rmation/negation and biconditional/xor have Boolean
complexities 2, 1 and 4, respectively, approximately agreeing with
their empirical dif®culty ordering1 once parity is taken into account.
(This remark simply recapitulates Neisser and Weene's paper11 in
modern terminology; perhaps their paper would have had more
in¯uence if parity had been recognized as an orthogonal factor to
complexity, thus improving agreement with the data.) In this light
the subjective advantage of conjunction over disjunction admits a
completely different explanation: the preference for Up over Down
parity. If this account is correct, it places a very different inter-
pretation on the main research result of this literature. In effect the
traditional argument that logical complexity does not predict
subjective dif®culty was based on a few relatively simple cases that
sit at the tip of a very large iceberg. The rest of the icebergÐthe full
D[P] hierarchyÐtells a very different story.

In a sense, this ®nal conclusion may seem negative: human
conceptual dif®culty re¯ects intrinsic mathematical complexity
after all, rather than some idiosyncratic and uniquely human bias.
The positive corollary though is certainly more fundamental:
subjective conceptual complexity can be numerically predicted
and perhaps explained. The next step is to reconcile this ®nding
with contemporary theory on concepts involving prototypes or
other more realistic types of category. M

Methods
Concepts were presented to subjects using a ®xed set of Boolean features in a world of
`amoebas' de®ned by simple binary features (shape of the nuclei, size of the nuclei, shading
of the nuclei and number of nuclei). Subjects were instructed that in each block they were
to view examples of a new species of amoeba, and that they were to try to learn to
distinguish examples from non-examples. For each concept, the computer ®rst generated
a random concept of the desired type (by beginning with the normal form and then
randomly permuting the assignment of features and the sign of each feature; hence all
features played all roles in the logical forms roughly equally often). The computer then
showed a screen displaying all positive and negative examples, which the subject was
allowed to view for a ®xed duration (always set at 5P s, for example 10 s in the 3[2] case, to
make the six families of roughly equal overall dif®culty). In the training screen, the positive
examples appeared in the upper half of the screen labelled `Examples', and all the rest of the
2D objects appeared in the lower half of the screen labelled `NOTexamples'. In the Up cases,
there were P positive examples and 2D 2 P non-examples, whereas in the Down cases there
were 2D 2 P positive examples and P negative examples. After the training screen, the
subject was presented with a sequence of all 2D objects in random order and asked to
indicate with a button press whether the object was an example or not an example of the
learned species. The computer recorded the proportion correct for each concept. At the
end of the series of 2D test trials, the computer would proceed to the training screen for the
next concept.

There were 20, 22, 27, 44, 45 and 57 subjects in the six families, respectively. Each subject
viewed concepts from only one D[P] family, viewing all |D[P]| concepts in both parities
(except for 3[4], which has only one parity), with the entire set being repeated with new
random concepts 8, 8, 3, 3, 2 and 1 times, respectively (these numbers chosen to make the
total lengths of the sessions approximately equal and maximize the number of datapoints
per subject).
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Nuclear receptors for retinoids (RARs) and vitamin D (VDR), and
for some other ligands (TRs, PPARs and LXRs), may be critical in
the development and homeostasis of mammalian epidermis1±8. It
is believed that these receptors form heterodimers with retinoid X
receptors (RXRs) to act as transcriptional regulators9,10. However,
most genetic approaches aimed at establishing their physiological
functions in the skin have been inconclusive owing either to
pleiotropic effects and redundancies between receptor isotypes
in gene knockouts, or to equivocal interpretation of dominant-
negative mutant studies in transgenic mice1,13±15. Moreover,
knockout of RXRa, the main skin RXR isotype, is lethal in
utero before skin formation11,12,16,17. Here we have resolved these
problems by developing an ef®cient technique to create spatio-
temporally controlled somatic mutations in the mouse. We used
tamoxifen-inducible Cre±ERT recombinases18,19 to ablate RXRa
selectively in adult mouse keratinocytes. We show that RXRa
has key roles in hair cycling, probably through RXR/VDR
heterodimers, and in epidermal keratinocyte proliferation and
differentiation.

To ablate RXRa in epidermis, we engineered mice carrying LoxP-
site-containing (¯oxed) RXRaL2 alleles (Fig. 1a) and used the K5±
Cre±ERT transgenic line in which tamoxifen (Tam) ef®ciently
induces Cre-mediated recombination in basal layer keratinocytes19.
K5±Cre±ERT(tg/tg)/RXRaL2/L2 mice mated with RXRa+/- (Fig. 1a;
ref. 16) or RXRaL2/+ mice yielded `pro-mutant' mice hemizygous
(tg/0) for K5±Cre±ERT and carrying either one RXRaL2 and one
RXRa null (-) allele (K5±Cre±ERT(tg/0)/RXRaL2/±genotype) or two
L2 alleles (K5±Cre±ERT(tg/0)/RXRaL2/L2 genotype). At 14 weeks old,
the pro-mutant mice were treated with Tam (5 days, 1 mg per day),
and then retreated 2, 4 and 6 weeks later. Six weeks after the ®rst
Tam treatment (AFT), 80% of RXRaL2 alleles were converted into
RXRaL- alleles in the epidermis of mice carrying one or two ¯oxed
alleles (Fig. 1b). By 12 weeks AFT, almost all RXRaL2 alleles had been

converted (Fig. 1b). As expected19, no RXRa disruption occurred in
vehicle (oil)-treated mice (data not shown) and Cre-mediated
excision of RXRa exon 4 was restricted to epidermis and some
epithelia in which the K5 promoter is also active (for example,
tongue, salivary gland, oesophagus; Fig. 1c).

Interestingly, hair loss (alopecia) was observed 6±7 weeks AFT in
the ventral region of pro-mutant mice, but not in oil-treated pro-
mutant mice or in Tam-treated K5±Cre±ERT(tg/0)/RXRaL2/+ `con-
trol' littermates (data not shown). At 12±16 weeks AFT, large
regions of ventral skin and smaller regions of dorsal skin were
hairless (Fig. 2a, b; and data not shown). Cysts became visible under
the skin surface and these enlarged and spread all over the body with
time (Fig. 2c; and data not shown). With increasing age (. 20 weeks
AFT), minor focal lesions appeared on hairless dorsal skin, on chins
and behind ears (Fig. 2d; and data not shown). These were not
caused by ®ghts and were formed of crusts on top of hyperproli-
ferative epidermis and in¯ammatory dermis (see below).
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displayed. c, Tissue-speci®city of Cre-ERT-mediated RXRa disruption. WT (+), L2

and L- alleles were identi®ed by PCR on DNA extracted from various organs of K5±Cre±

ERT(tg/0)/RXRaL2/+ mice, 12 weeks AFT. d, Tamoxifen-induced generation of RXRa null

alleles in adult mouse epidermis using K14±Cre±ERT2(tg/0)or K14±Cre±ERT2(0/0) mice

(designated (tg/0) and (0/0), respectively). PCR analysis of genomic DNA from epidermis

(E) and dermis (D), isolated two weeks after injection of either Tam (0.1 mg) (+) or vehicle

(-). Mouse genotypes are indicated and PCR fragments corresponding to RXRa (+), L2

and L- alleles are displayed.
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