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Geometry of abstract learned knowledge in 
the hippocampus

Edward H. Nieh1,6, Manuel Schottdorf1,6, Nicolas W. Freeman1, Ryan J. Low1, Sam Lewallen1, 
Sue Ann Koay1, Lucas Pinto1,5, Jeffrey L. Gauthier1, Carlos D. Brody1,2,3,7 ✉ & David W. Tank1,2,4,7 ✉

Hippocampal neurons encode physical variables1–7 such as space1 or auditory 
frequency6 in cognitive maps8. In addition, functional magnetic resonance imaging 
studies in humans have shown that the hippocampus can also encode more abstract, 
learned variables9–11. However, their integration into existing neural representations 
of physical variables12,13 is unknown. Here, using two-photon calcium imaging, we 
show that individual neurons in the dorsal hippocampus jointly encode accumulated 
evidence with spatial position in mice performing a decision-making task in virtual 
reality14–16. Nonlinear dimensionality reduction13 showed that population activity was 
well-described by approximately four to six latent variables, which suggests that 
neural activity is constrained to a low-dimensional manifold. Within this 
low-dimensional space, both physical and abstract variables were jointly mapped in 
an orderly manner, creating a geometric representation that we show is similar across 
mice. The existence of conjoined cognitive maps suggests that the hippocampus 
performs a general computation—the creation of task-specific low-dimensional 
manifolds that contain a geometric representation of learned knowledge.

Since the discovery of place cells in the cornu ammonis 1 (CA1) 
of the dorsal hippocampus that increased their firing rates when 
rats moved through specific locations in a given environment1, 
hippocampal neurons have also been shown to encode time17,18, 
auditory frequency6, odours4,7 and taste5. Together, these studies 
support the view that the hippocampus constructs task-dependent 
cognitive maps8,19, in which hippocampal neurons not only encode 
spatial position, but whichever environmental variable is relevant to  
the task at hand. Furthermore, functional MRI studies in humans 
have shown that the hippocampus can encode more cognitive vari-
ables, such as the sequential nature of a non-spatial task9 or social 
structures10,11. Cognitive variables can be characterized by geometric 
properties such as adjacency and distance20–22, suggesting that the 
neural encoding of these variables at the cellular level may also have 
geometric structure.

Neural activity can be described as a point in a high-dimensional 
coordinate system, in which each coordinate axis represents the 
activity of a single neuron. The underlying properties of the network 
and its inputs can confine neural trajectories to a subregion of this 
space—the neural manifold—which has been proposed to underlie 
motor movements23,24, head direction cells25 and hippocampal maps 
of physical variables13. The conceptual ideas in these studies suggest 
a general principle of hippocampal computation: the construc-
tion of organized maps of learned knowledge26,27 instantiated by 
neural manifolds. Here we examine how neurons in the dorsal CA1  
integrate neural representations of cognitive and physical  
variables and whether low-dimensional manifolds underlie these  
representations.

Evidence accumulation in virtual reality
We used transgenic GCaMP6f-expressing mice (n = 7) performing an 
evidence-accumulation task in virtual reality14,28–30 (Supplementary 
Video 1) and two-photon calcium imaging to record the activity of 
neurons in dorsal CA1 at cellular resolution (n = 3,144 total neurons; 
449 ± 64 neurons (mean ± s.e.m.) simultaneously recorded per session) 
(Fig. 1a). The ‘accumulating towers’ task14 combines navigation with 
decision-making, such that position—a physical variable—has to be inte-
grated with accumulated evidence14–16,31,32—a cognitive variable that is 
not innate and can be inferred and calculated only after learning the task 
rules. Mice learned to traverse the stem of an immersive virtual-reality 
T-maze, while visual cues were presented randomly on the left and right 
walls. Turning to the side with more cues at the end of the maze resulted 
in the delivery of a liquid reward, while turning to the opposite side 
resulted in a time-out. Consistent with previously published results14, 
the behaviour showed characteristic psychometric curves (Fig. 1b) and 
mice used evidence (the number of right towers minus the number of 
left towers) from throughout the cue period (Fig. 1c).

Figure 1d, e illustrates two possibilities for how CA1 neurons may 
behave in the task. If the neurons behave similarly to previously 
described place cells that respond differently depending on con-
text2,3,33,34—for example, ‘splitter cells’ that encode turn direction—we 
would expect reliable place cell sequences that are specific to right- or 
left-turn trials (Fig. 1d). However, if individual CA1 neurons can encode 
a cognitive variable, such as the amount of accumulated evidence, in 
addition to the position in the maze, the cognitive map would comprise 
at least two independent axes—a position axis and an accumulated 
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evidence axis35. If so, we would expect each right-choice trial to evoke 
different neural sequences, depending on the time courses of evidence 
that the mice encountered throughout the maze (Fig. 1e). Notably, in 
this second scenario, firing fields evaluated in a single dimension—such 
as position—would exist, but would appear unreliable across trials with 
different amounts of accumulated evidence (Fig. 1e, bottom). Unreli-
ability could appear as either missing activity in the place field of the 
cell or variability in the position at which the cell is active.

Joint encoding of position and evidence
To distinguish between these two possibilities, we examined how neural 
activity depended on known behavioural variables such as position, 
choice and evidence. We first calculated ΔF/F for each identified hip-
pocampal CA1 neuron following established methods15,36,37. We then 
measured the mutual information between the neural activity of each 
cell and the position of the mouse along the stem of the T-maze (0 to 
300 cm) and compared it to a shuffled dataset in which the activity of 
each cell was circularly shifted within each trial. CA1 neurons exhib-
ited choice-specific place cell sequences when activity was sorted by 
the position of peak activity (Fig. 2a). However, the response of indi-
vidual cells in these sequences was more variable and unreliable on a 
trial-by-trial basis in comparison to a simpler alternation task (Extended 
Data Fig. 1a, b). This is against the prediction of choice-specific cell maps 

(Fig. 1d), but is consistent with maps in which evidence and position 
are jointly encoded (Fig. 1e). We next measured the mutual informa-
tion between accumulated evidence and the neural activity of each 
cell and found that CA1 neurons formed firing fields in evidence space 
that spanned small segments of evidence values (Fig. 2b and Extended 
Data Fig. 1c), consistent with Fig. 1e.

To directly test the hypothesis that CA1 neurons encode evidence 
and position jointly (Fig. 1e), we measured the amount of mutual infor-
mation between neural activity and occupancy in a two-dimensional 
evidence-by-position (E × Y) space and compared this to the amount 
of mutual information if cells encoded position or evidence indepen-
dently. The neural activity of an example neuron with significant mutual 
information between activity and occupancy in E × Y space is shown in 
Fig. 2c, and 25 of these neurons from a single imaging session are shown 
in Fig. 2d and Extended Data Fig. 2a. For these neurons that jointly 
encode position and evidence, mutual information in E × Y space was 
significantly greater than in two-dimensional spaces in which either 
evidence or position values were shuffled (Fig. 2e and Extended Data 
Fig. 2b, c).

Geometric representation by a neural manifold
Although the mutual information metric has historically been used to 
measure spatial information in single hippocampal neurons38, it relies 
on the manual selection of predetermined behavioural variables. We 
therefore turned to the unsupervised extraction of neural manifolds 
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Fig. 1 | Imaging of CA1 neural activity in mice performing the accumulating 
towers task. a, Top, schematic of the task in which head-fixed mice navigate a 
virtual-reality evidence-accumulation T-maze task. Insets show example views 
from the perspective of the mice. Bottom, while mice (n = 7) perform the task, 
two-photon calcium imaging is used to record hippocampal CA1 neural 
activity. Scale bars, 200 μm (main image) and 20 μm (magnification).  
b, Psychometric curves of mice performing the towers task. Grey lines, n = 7 
mice; black line, metamouse combining data across mice. Data are 
mean ± binomial confidence interval. c, Logistic regression showing that mice 
use evidence (number of right towers minus number of left towers) from 
throughout the cue period. Grey lines, n = 7 mice; black line, metamouse 
combining data across mice. Data are mean ± s.e.m. d, Firing fields of 
right-choice-selective place cells would not depend on evidence and would 
therefore divide a joint evidence-by-position (E × Y) space into two halves (top). 
Two right-choice trials would generate the same neural sequence (bottom).  
e, Alternatively, if hippocampal neurons encoded evidence jointly with 
position, smaller firing fields that divide the evidence dimension would appear 
in E × Y space (top), and two right-choice trials could have different neural 
sequences that depend on the evidence values traversed (bottom).
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using a principled method: manifold inference from neural dynamics 
(MIND)13. Whereas most nonlinear dimensionality reduction techniques 
focus on the geometric properties of the cloud of population-state data, 
MIND constructs a set of latent variables with a specific emphasis on 
incorporating temporal dynamics. It is therefore particularly suited to 
find low-dimensional representations in data with sequential activity.

We first used the distance metric in MIND to estimate the dimension-
ality of the neural manifold in the hippocampus during the accumu-
lating towers task. We calculated distances from estimated transition 
probabilities between observed population activity states and counted 
the cumulative number of population states that fell within spheres of 
growing radii r, where r is an estimate for the inner distance12,39. If the 
manifold has d dimensions, we expect the number of states to grow as 
rd. We found that the number of states grows approximately as d = 5.4 
(4.8–6.0; 95% bootstrapped confidence interval), strongly indicating a 
low, approximately four-to-six-dimensional latent geometry (Fig. 3a). 
Notably, the dimensionality estimate of a simpler task, in which visual 
cues appeared only on one side of the maze, was significantly lower 
(Extended Data Fig. 3).

To validate this estimate, we next embedded the manifold into 
d-dimensional Euclidean spaces and assessed how well these embed-
ded manifolds described neural data using cross-validation on held-out 
trials (Extended Data Fig. 4). Figure 3b shows a small portion of the 
activity from 40 neurons and the reconstruction of that same data 
from the five latent variables obtained after embedding the manifold 
into a five-dimensional Euclidean space. We measured the average 
cross-validated correlation coefficient between the neural data and 
the reconstruction of the same data from manifolds embedded into 
two- to seven-dimensional Euclidean spaces. Consistent with the 
dimensionality estimate in Fig. 3a, we find that the reconstruction 
performance saturates at around five to six dimensions (Fig. 3c). Using 
a linear dimensionality reduction technique—principal component 
analysis—comparable decoding indices for embedding into 4, 5 and 
6 dimensions are reached using 29, 40 and 47 principal components, 
respectively. This reveals that hippocampal activity is constrained to an 
intricately shaped low-dimensional manifold that can only be identified 
with nonlinear dimensionality reduction techniques.

If the neural manifold accurately represents the cognitive map of 
the task that individual neurons encode, two key predictions should 
hold true. First, individual neurons should have firing fields that tile 
the latent space and, second, important variables in the task—such 
as position and evidence—should be organized in an orderly man-
ner. The activity of a representative neuron plotted as a heat map on 
a three-dimensional embedding of the manifold is shown in Fig. 3d, 
demonstrating a localized firing field on the manifold. Plotting the 
activity of multiple neurons on the same manifold reveals that the 
manifold is tiled with multiple firing fields (Fig. 3e and Supplementary 
Video 2). Furthermore, the manifold structure implies the coordinated 
activity of the entire neural population, such that activity of a single 
neuron can be well-predicted by activity from the rest of the popula-
tion (Extended Data Fig. 4).

The second key prediction of our hypothesis is the orderly organi-
zation of important task variables on the manifold. Figure 3f reveals 
that both position and evidence appear organized as gradients in 
the latent space, in that the trajectory of the neural state typically 
progresses along a position direction in the course of a trial, while 
splitting along an independent, but integrated, evidence direction 
(Supplementary Video 3)—a structure that is fundamentally different 
from the visual inputs that the mouse experiences in the towers task 
(Extended Data Fig. 5). We then used Gaussian process regression 
to decode position and evidence from the manifold and found that 
both variables can be decoded with similar accuracy as from neural 
data (Fig. 3g). In addition, other behavioural variables such as veloc-
ity and view angle could also be decoded from the manifold, as well 
as binary task variables such as the choice on the previous trial and 

whether the previous trial was correct (Extended Data Fig. 6 and Sup-
plementary Discussion).

If these geometric objects are task-specific, rather than mouse- 
specific, there should be a high degree of similarity across mice 
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performing the same task12. To test this hypothesis, we trained a model 
to predict position and evidence from manifold coordinates in one 
mouse and used the model to decode these variables in another mouse, 
after aligning their manifolds in the five-dimensional embedding space 
(Fig. 3h, i). We found that the majority of the geometric structure was 
shared across mice (Fig. 3j).

Sequential neural activity encodes behaviour
If the manifold is a good representation of hippocampal neural activity, 
then each trial in the accumulating towers task has a corresponding tra-
jectory within the manifold, leading to the emergence of trial-specific 
sequences of active cells. To detect sequences, we identified pairs of 
cells that consistently fired one after the other without any restrictions 
on the time and/or place in the maze that each cell fired (Extended 
Data Fig. 7a) and termed a pair of cells as a ‘doublet’ if one cell fired 
after the other significantly more often than in a shuffled dataset, in 
which the activity of each neuron was circularly shifted within each 
trial (Fig. 4a and Extended Data Fig. 7b). To test whether these dou-
blets appear more often than would be expected from independently 
behaving choice- and position-selective cells, we shuffled the trial IDs 
of each cell independently within left- and right-choice trials to remove 
pairwise correlations while preserving the place and side structure 
seen in Fig. 2a (Extended Data Fig. 8). The number of trials in which 

doublets appeared was significantly greater than in the shuffled dataset 
(Fig. 4b and Extended Data Fig. 9a). Furthermore, given the mostly uni-
directional trajectories of the task in conceptual E × Y space (Extended 
Data Fig. 8a, b), we found that doublets were asymmetric (Fig. 4c and 
Extended Data Fig. 9b).

Next, we used the latent dimensions from the five-dimensional 
embedding of the manifold to reconstruct the neural activity of all 
cells and extracted doublets from this reconstructed data. Even though 
doublets are very rare (on average, a given doublet is only active in 
3.6 ± 0.01% (mean ± s.e.m.) of trials; n = 16,088 doublets), the manifold 
predicted the presence of doublets with a 0.87 ± 0.02 true-positive rate 
and 0.14 ± 0.01 false-positive rate (n = 7 mice; mean ± s.e.m.) (Extended 
Data Fig. 9d). Furthermore, we found that the manifold could also 
predict the precise timing of doublet events—the correlation between 
the timing of a doublet and the distance traversed on the manifold 
was significantly greater than the correlation in a shuffled dataset in 
which manifold path lengths were taken from different trials with the 
same time interval (Fig. 4d, e) (two-tailed Wilcoxon signed-rank test, 
n = 7 mice, P = 0.031).

As the manifold encodes sequential activity well and given that 
behavioural variables are geometrically represented on the manifold 
(Fig. 3f, g), we would expect sequences to encode information about 
the behaviour of the mouse, specifically the upcoming choice. First, 
we identified doublets that were significantly choice-predictive by 
comparing the probability that the mouse turns left or right in trials in 
which a doublet appears to the same probability in a shuffled dataset 
in which choices in each trial were shuffled. Next, we found that these 
choice-predictive doublets were significantly more predictive than 
the same doublets drawn from the shuffled dataset in which trial IDs 
were shuffled (Fig. 4f and Extended Data Fig. 9c). Taken together, these 
sequences are informative beyond independently behaving cells, sug-
gesting population activity that is consistent with movement along the 
low-dimensional manifold.

Discussion
By combining large-scale calcium imaging with a behavioural task in 
which animals accumulate abstract evidence during navigation, we 
show how the coordinated activity of neurons in the dorsal CA1 region 
of the hippocampus gives rise to a task-specific geometric representa-
tion of a cognitive process. The neural population manifests this geo-
metric representation by having firing fields within a low-dimensional 
nonlinear manifold, along which key task variables—both continuous 
and discrete—have an orderly arrangement. Previous rodent studies 
have shown the existence of low-dimensional manifolds in the hip-
pocampus representing spatial position12,13, and functional MRI stud-
ies in humans have shown that more abstract variables, such as social 
structures10,11, can be decoded from the hippocampus. One possibility 
was that different sets of hippocampal neurons could have encoded 
these variables separately, similar to the specialized coding of sensory, 
motor and cognitive variables by dopamine neurons in the ventral 
tegmental area in the same task16. However, we found that the major-
ity of task-responsive neurons encoded position and evidence jointly 
(Fig. 2), leading to population dynamics that also reflect this joint neural 
code (Figs. 3, 4).

The formation of a conjoined geometric representation of physical 
and abstract task variables, within neural manifolds in the hippocam-
pus, could serve as a common organizing principle across two roles 
of the hippocampus—storing declarative memory and generating 
cognitive maps—that have historically been studied separately21,26,40. 
Low-dimensional manifolds could serve as the substrate on which rela-
tional networks for both declarative and spatial memories are stored27. 
In addition, our work suggests that the fast replay sequences seen in 
human non-spatial tasks9 could be organized by the geometric struc-
ture of the neural manifold, analogous to the process by which neural 
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data in which trial IDs were shuffled. Left-predictive, n = 922 doublets, 
two-tailed paired Student’s t-test, real versus shuffled data, ****P < 0.0001; 
right-predictive, n = 1,227 doublets, two-tailed paired Student’s t-test, real 
versus shuffled data, ****P < 0.0001. For box plots, boundaries, 25–75th 
percentiles; midline, median; whiskers, minimum–maximum.
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sequences during ongoing behaviour are evoked from trajectories 
through the manifold (Fig. 4). Finally, recent computational work has 
focused on how representations of knowledge in a reinforcement learn-
ing40 or predictive coding27 context can be used to guide behaviour. 
There are intriguing parallels between the latent structure identified 
in these models and the latent variable structure we have uncovered 
in our studies. However, future work is required to provide a quanti-
tative understanding of how our experimental results relate to these 
learning models.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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Methods

Animals and stereotaxic surgery
All procedures performed in this study were approved by the Institu-
tional Animal Care and Use Committee at Princeton University and 
were performed in accordance with the Guide for the Care and Use of 
Laboratory Animals (National Research Council, 2011). Male and female 
mice aged 2–18 months expressing GCaMP6f were used for chronic 
expression of the calcium indicator.

n = 5 triple transgenic mice expressing GCaMP6f under the CaMK11α 
promoter were obtained by crossing Ai93-D;CaMKIIα-tTA mice 
(Igs7tm93.1(tetO-GCaMP6f )HzeTg(Camk2a-tTA)1Mmay/J, Jackson Laboratories, 
024108) and Emx1-IRES-cre mice (B6.129S2-Emx1tm1(cre)Krj/J, Jackson 
Laboratories, 005628). These mice are also referred to as Ai93 × EMX1.

n  =  10 Thy1-GCaMP6f mice (C57BL/6J-Tg(Thy1-GCaMP6f )
GP5.3Dkim/J, Jackson Laboratories, 028280) were used. These mice 
are also referred to as GP5.3.

Behaviourally, no differences have been observed in Ai93 × EMX1 
and GP5.3 mice14. In terms of calcium imaging, Ai93 × EMX1 mice have 
higher expression levels of GCaMP6f than GP5.3 mice and therefore 
higher signal-to-noise ratios, which results in the use of different activ-
ity thresholds to identify calcium events (described in ‘Identification 
and analysis of sequences’). Some mice were used in multiple behav-
ioural experiments that we analysed. For example, the one-side cues 
task is a training stage in the shaping procedure for the accumulating 
towers task. For analyses and statistics other than those in Fig. 1b, c 
(described in ‘Psychometric curves’ and ‘Logistic regression analy-
sis’), one imaging session for each mouse was selected based on the 
performance of the mouse in the task during the session, the number 
of active cells identified by the automated cell-finding algorithm, the 
amount of noise in the ΔF/F signal and the quality of motion correction.

Mice underwent surgical procedures as previously described29,41 to 
acquire optical access to the hippocampus. Surgery was performed on 
mice under aseptic conditions and body temperature was maintained 
with a heating pad (Harvard Apparatus). Mice were anaesthetized with 
isoflurane (2.5% for induction, 1–1.5% for maintenance) and given a pre-
operative dose of meloxicam subcutaneously for analgesia (1 mg kg−1) 
and a postoperative dose 24 h later. After asepsis, the skull was exposed, 
and the periosteum was removed.

A custom lightweight titanium headplate was attached to the skull 
with adhesive cement (C&B Metabond, Parkell). A craniotomy in the 
left hemisphere centred over the CA1 (mediolateral, −1.8 mm from 
the midline; anteroposterior, 2.0 mm posterior from bregma) was 
made using a pneumatic drill. A small volume of overlying cortical 
tissue was aspirated to expose the external capsule; superficial fibres 
were then removed until the alveus became visible. A thin layer of 
Kwik-Sil (WPI) was injected into the resected area, and a metal can-
nula (316 S/S Hypo Tub 12T GA. 0.1080/0.1100 inches outer diameter 
× 0.0890/.0930 inches inner diameter × 0.060 inches long; cut and 
deburred) with a coverglass (2.5 mm diameter, Erie Scientific) attached 
to the bottom (NOA81 adhesive, Norland) was implanted on top of the 
Kwik-Sil, so that the Kwik-Sil served as a stabilizing medium between the 
glass and brain tissue. Another layer of adhesive cement was added to 
attach the cannula to the skull and the headplate. Mice were allowed to 
recover for at least 5 days before starting water restriction for behav-
ioural training. Mice were extensively handled during the restriction 
process to familiarize them to experimenters. Mice were allotted daily 
volumes of 1–2 ml of liquid per day, delivered either during behavioural 
sessions or supplemented after sessions. Mice were examined daily to 
ensure that there were no signs of dehydration and that a body mass 
of at least 80% of the initial value was maintained.

Behavioural training
The mice were trained to perform the accumulating towers task in 
a virtual-reality environment, as previously described14–16,42. In brief, 

mice were headfixed so that they could run comfortably on an 8-inch 
(20 cm) Styrofoam ball suspended by compressed air. Ball movements 
were measured with optical flow sensors (ADNS3080) via an Arduino 
Due, and the virtual-reality environment was projected onto a coated 
Styrofoam screen (approximately 270° horizontal and 80° vertical 
visual field) using a DLP projector (Mitsubishi). The virtual environ-
ment was generated using ViRMEn software28. Rewards were delivered 
by a solenoid valve (NResearch), controlled by a NI-DAQ card (PCI-
6229, National Instruments). This virtual-reality system has previously 
been used14–16,42 and was designed, by choice of material and size of 
the spherical treadmill, to minimize the amount of effort to turn the 
floating ball, such that the moment of inertia of a mouse pushing back 
the ball (2.78 × 10−4 kg m2) is comparable to the moment of inertia of a 
mouse pushing itself (2.68 × 10−4 kg m2).

Mice were trained to run down a 330-cm virtual T-maze (30-cm 
start region, 200-cm cue region and 100-cm delay region). As mice 
ran through the cue region, tall, high-contrast visual cues (towers, 6 cm 
tall and 2 cm wide) were shown along either wall. After the delay period, 
mice were presented with a liquid reward for turning into the arm on 
the side where more towers had been shown (4–8 μl of 10% v/v sweet 
condensed milk or 10% w/v sucrose). Rewarded trials were followed 
by a 3-s inter-trial interval, and error trials were followed by an audio 
error cue and a 12-s inter-trial interval. When rewards or error cues were 
delivered, the visual display froze for the first second after which the 
display was then blacked out. The trial length for the seven experimental 
mice was 6.3 ± 0.8 s (mean ± s.e.m.) (cue, 2.4 ± 0.4 s; delay, 1.9 ± 0.2 s).

Tower positions were drawn randomly from spatial Poisson pro-
cesses with means of 7.7 and 2.3 towers per metre on the rewarded 
and unrewarded sides, respectively. Towers were transient, appear-
ing when mice were 10 cm away from their locations and disappeared 
after 200 ms. Each session started with at least 10 trials of a visually 
guided version of the task as warm-up before proceeding to the main 
task. Behavioural sessions lasted 48:16 ± 03:44 (mm:ss; mean ± s.e.m.; 
n = 7 mice). For analyses, trials in which mice turned around 180° or 
backtracked to before halfway in the delay region were not included. 
Detailed methods for the shaping procedures involved in training mice 
to perform the task, as well as performance and behavioural analyses, 
have previously been published14.

A different set of mice learned a simplified version of this task (‘alter-
nation task’), in which no towers were presented in the T-maze. In one 
version of the alternation task (n = 2) (Extended Data Fig. 1), the walls 
were textured differently along the long stem and large distal cues 
were added, as previously described41. The maze itself was also slightly 
longer (340 cm instead of 300 cm). In a second version (n = 7) (Extended 
Data Fig. 6), the maze was identical to the accumulating towers task, 
except no towers were ever shown. In both cases, mice simply needed 
to alternate between left and right turns to be rewarded. Visual guides 
were also present in the arm in which the reward would be located.

Two-photon cellular-resolution calcium imaging
The two-photon calcium imaging setup was identical to a previ-
ously published design15. Two-photon illumination was achieved 
with a Ti:Sapphire laser (Chameleon Vision II, Coherent) operating 
at 920 nm. Fluorescence was acquired using a 40×/0.8 NA objec-
tive (LUMPLFLN40X/W, Olympus) and GaAsP photomultiplier 
tubes (H10770PA-40, Hamamatsu) after passing through a dichroic 
(FF670-SDi01, Semrock), an infrared filter (FF01-720sp, Semrock), 
reflected by a second dichroic (FF562-Di03, Semrock) and passing 
through a final band-pass filter (FF01-520/60, Semrock). The output 
signal of the photomultiplier tube was amplified (Variable High Speed 
Current Amplifier; 59-179, Edmund Optics) and digitized (PXIe-7961R 
FlexRIO, National Instruments). The microscope was controlled by 
ScanImage (Vidrio Technologies) software using additional analogue 
output units (PXIe-6341, National Instruments) for the laser power 
control and the control of the scanners. Double-distilled water was 
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used as the immersion medium for the objective. The average beam 
power measured at the front of the objective was 60–160 mW. The 
region between the objective and imaging site was shielded from exter-
nal sources of light using a black rubber tube. Horizontal scans of the 
laser were achieved using a resonant galvanometer (Thorlabs). Typical 
fields of view measured approximately 500 × 500 μm and data were 
acquired at 30 Hz.

Data processing and cell identification
All imaging data were corrected for non-rigid brain motion using cus-
tom MATLAB code based on a technique similar to NoRMCorre, in 
which the image is divided into multiple overlapping patches and a 
rigid translation is estimated for each patch and frame by aligning 
against a template37. The set of transitions are then upsampled to create 
a smooth motion field that is applied to a set of smaller overlapping 
patches, and the registered frame is then used to update the template 
by calculating a running mean of past registered frames.

After correcting for motion, fluorescence traces (downsampled 
to 15 Hz) corresponding to individual cells were extracted using a 
constrained non-negative matrix factorization algorithm (CNMF)36. 
Initialization of the spatial components for CNMF was done as previ-
ously published, as was classification of identified components into 
cell-like and non-cell-like categories15. Automated classification was 
followed by manual re-classification of a subset of components and 
artefact rejection. ΔF/F for each cell was calculated using the modal 
value of fluorescence in 3-min long windows as baseline fluores-
cence. An important note is that CNMF can only identify cells with 
calcium activity during the imaging session, hence cells that were 
silent for the entire imaging session were not included in reported 
cell numbers.

Psychometric curves
Psychometric curves (Fig. 1b) were plotted using previously described 
methods14. In brief, psychometric curves were fit using a four-parameter 
sigmoid, p p B(Δ) = + [1 + e ]R

λ
0

−(Δ−Δ )/ −1
0 , in which Δ is the difference 

between the number of right and left towers. The binomial confidence 
interval was calculated using Jeffrey’s method14,15.

Logistic regression analysis
Logistic regression (Fig. 1c) was performed using previously described 
methods14. In brief, we modelled choices of the mice in each trial with 
logistic regression in which the factors are the evidence (number of 
right towers minus number of left towers) in five equally sized regions 
in the cue period.

For both the psychometric curves (Fig. 1b) and the logistic regression 
analysis (Fig. 1c), all sessions in which mice (n = 7) performed above 
60% correct were included (n = 109 total sessions).

Mutual information analysis
For each cell, we evaluated a previously defined mutual information 
metric38, ∫I λ x p x x= ( ) log ( ) d

x

λ x
λ2
( ) , in which I is the mutual information 

rate of the cell in bits per second, x is the spatial location of the mouse, 
λ(x) is the mean ΔF/F of the cell at location x, p(x) is the probability 
density of the mouse occupying location x and ∫λ λ x p x x= ( ) ( ) d

x
 is the 

overall mean ΔF/F of the cell.
To obtain λ(x), we first denoised ΔF/F  by smoothing with a Gaussian 

filter with a length of 5 bins and thresholded the result so that values 
less than 2 robust σ across the time series were set to 0. λ(x) was then 
calculated bin-wise by collecting all smoothed and thresholded ΔF/F 
values in their respective bins across the entire session and taking the 
mean. λ(x) was then smoothed by convolution with a Gaussian filter 
with a length of 5 bins and a σ of 1 bin. p(x) was calculated similarly by 
counting the number of frames that the mouse spent in each bin across 
trials and normalized to have a sum of 1.

For position data, 10-cm bins from 0 cm to 300 cm were used. For 
evidence data, 31 bins (–15 to 16, number of right towers minus num-
ber of left towers) were used. For multidimensional spaces in which 
we randomized one of the dimensions (RE × Y and E × RY in Fig. 2e), the 
randomized variables (RE or RY) were created by using uniform ran-
dom sampling with replacement from the joint distribution of discrete 
evidence (E) and position (Y) values. More specifically, for the RE × Y 
space, in which Y is the non-randomized dimension, we first found the 
distribution of E values present in the data for each Y value. This cre-
ated 30 separate E distributions with respect to Y. The RE value for each 
frame was generated by randomly sampling from the sole E distribution 
that corresponded to the non-randomized Y value for that frame. This 
procedure was performed to control for the non-uniformity of the joint 
E × Y distribution in which specific combinations of E and Y values can 
have greatly different probabilities. A similar procedure was followed 
for generating the E × RY variable.

To determine significance, the mutual information value of each cell 
was compared with the mean mutual information value of a shuffled 
dataset (100 shuffles), in which the ΔF/F of each cell was circularly 
shifted by a random interval within each trial, which disrupts the rela-
tionship between position and neural activity, but maintains neural 
activity patterns. Only cells that had mutual information values greater 
than 2σ above the average mutual information of the shuffle distribu-
tion were considered statistically significant. Cells with statistically 
significant mutual information between neural activity and position 
in left-choice trials, but not right-choice trials were categorized as 
left-choice preferring, whereas cells with statistically significant mutual 
information between neural activity and position in right-choice trials, 
but not left-choice trials were categorized as right-choice preferring. 
Those that were significant for both left and right choice trials were 
categorized as non-preferring. Similar tests were done for mutual infor-
mation between neural activity and evidence, with the addition that 
cells for which training and test sets were not correlated (described 
below) were rejected.

For one-dimensional sequence plots (Fig. 2a, b and Extended Data 
Figs. 1c, 3c), λ(x) values were sorted and normalized on the basis of 
their peak mean ΔF/F values. For the cross-validation procedure for 
evidence fields (Extended Data Fig. 1c), trials were ranked on the basis 
of the maximum ΔF/F value of the cell in a given trial. Odd-ranked and 
even-ranked trials were assigned to the training and test sets, respec-
tively. λ(x) was recalculated on the training and test sets and smoothed 
as described above. Only cells with significantly correlated λ(x) between 
the training and test sets (P < 0.05) were used in the sequence plots. 
The training set was sorted on the basis of the peak mean ΔF/F values 
and plotted. This same sorting index was then used to plot the test set.

For Extended Data Fig. 2d, cells were considered to encode both 
evidence and position if they had significant mutual information in E × Y 
space, as described above. Of the remaining cells, cells were considered 
to encode only position if they were significant in RE × Y space (16%) and 
only evidence if they were significant in E × RY space (6%). For Extended 
Data Fig. 2e, distributions of mutual information in RE × Y and E × RY 
space were calculated from 50 different shuffles, in which either E or 
Y were shuffled. Of the E × Y cells described above, 89.9% had mutual 
information values in E × Y space greater than 2σ above the mean of 
both shuffled distributions, 9.8% had mutual information values that 
were greater than only the E × RY distribution and 0.3% had mutual 
information values that were greater than only the RE × Y distribution.

Counting the number of place fields
To estimate the number of place fields in E × Y space, we followed a heu-
ristic to count peaks derived from previous studies43,44. Using the neural 
activity maps for each neuron in E × Y space (Fig. 2c, d and Extended 
Data Fig. 2a) obtained as described above (see ‘Mutual information 
analysis’), we considered all bins that were 2σ above the shuffled mean 
as candidate place fields in the E × Y space. We then joined all bins with 



adjacent significant bins, and if a connected component exceeded 
3 × 3 = 9 bins, we counted the connected component as a place field. The 
distribution of the place field counts is shown in Extended Data Fig. 2g. 
Note that a very small number of cells (3%, n = 31 out of 917 cells) had 
significant firing fields above the shuffled control that were smaller than 
9 bins. These appear in the histogram as ‘0’. Cells had approximately 
1.7 ± 0.3 (mean ± s.e.m.) firing fields, with 53% (n = 490 out of 917) of 
cells having more than one firing field.

Manifold inference from neural dynamics
To infer latent dimensions from neural dynamics, we adopted a pre-
viously developed procedure13 for calcium-imaging data. We first 
smoothed the raw ΔF/F traces with an 11-bin Gaussian filter and thres-
holded at 4σ, for which we estimated the robust σ across the entire time 
series, but individually for every neuron. We restricted our analysis 
to cells that had at least one transient in the recording session, and 
imaging frames that had at least one active cell, as well as the portion 
of the maze represented by 0–300 cm (cue and delay periods). We 
then followed the previously published procedure13 to calculate the 
distances between pairs of population activity vectors, extracting a 
set of latent variables from these distances with multidimensional 
scaling, and learning a map between latent space and network activity 
with local linear embedding (LLE).

In brief, we first learned a generative model of transition probabili-
ties from population activity s(t) = [s1(t), …, sN(t)] of N neurons at time 
0 < t < T, to the activity s(t + Δt) using the previously developed random 
forest method13 with a few modifications. First, when splitting the neural 
state space into regions using a set of hyperplanes organized in a deci-
sion tree, we assessed 20 random hyperplane orientations at every node 
of the tree and selected the orientation that best split the data. This 
improved performance with the large numbers of neurons typically 
encountered in calcium imaging. Second, we set the minimum number 
of leaves in each random tree to 500. Third, to define transitions, we 
considered all states Δt = 67 ms apart (one frame at a 15-Hz frame rate). 
Fourth, we fit manifolds to all data points, not only a subset of landmarks. 
All other hyperparameters were chosen as previously described13. The 
random forest model provides us with a set of transition probabilities 
p(s(t + Δt)|s(t)) that can be translated into a local distance δ(s(t + Δt), s(t)) 
under a diffusion approximation, in which the transition probability p 
decreases with distance δ as p ∝ exp(−δ2). Similar to isomap45, we then 
calculated the global distance between two states as the length of the 
shortest path from one to the other via any intermediate, connected 
states. The pairwise geodesic distances of l points ρ(i,j), in which 0 < i, 
j ≤ l, then yields a matrix of size l × l that was embedded using multidi-
mensional scaling with Sammon’s nonlinear mapping. This yielded 
latent variables to describe population data. The mapping from latent 
space to neural activity and back was then achieved with LLE13.

Manifold inference on video files
To construct a low-dimensional representation of the task itself, 
we applied the algorithm described above (see ‘Manifold inference 
from neural dynamics’) to the visual input that the mice received in 
a typical experimental session, more specifically to the blue channel 
across all RGB pixels in each frame of the video files displaying the 
field of view of the mice. This corresponds to a vectorized time series 
of 1,792 × 1,088 = 1,949,696 pixels as a function of time. To make this 
analysis computationally viable, we first downsampled the videos 
17× from the original 1,792 × 1,088, restricted our analysis to trials 
shorter than 30 s and frames with positions between 0 and 350 cm, 
and simplified the hyperparameters, in comparison to the analysis of 
neural data by using only two random hyperplane orientations and 
1,000 landmarks. All other parameters were identical to the analysis 
of neural data. The results are shown in Extended Data Fig. 5, where 
Extended Data Fig. 5a shows the mean luminance of the blue channel, 
after averaging across all pixels.

Dimensionality estimation
To estimate the dimensionality of the latent manifold, we analysed 
the geometric properties of the geodesic distance matrix ρ(i, j). We 
specifically studied the statistics of nearest neighbour distances. Sup-
pose that the neural states were confined to a two-dimensional sheet in 
high-dimensional neural state space. Within the sheet, the cumulative 
number of points N within distance r will increase quadratically with 
distance r, as more points on the sheet will fall within the neighbour-
hood, thus recovering the two-dimensional sheet structure. Using 
this variation of the correlation dimension that can also be used for 
complex attractor geometries12,39, we found a wide range of values for 
which the number of points scaled like a power law.

We fit this power law by minimizing the quadratic error to the model 
function N(r) = crd, in which N is the total number of neighbours, r is the 
distance, and c and d are fit parameters. We fit this function over three 
orders of magnitude, for 103 < N < 106. The average across the seven 
mice yielded d = 5.4 (4.8–6.0; 95% bootstrapped confidence intervals). 
These numbers are consistent with an approximately 4–6-dimensional 
manifold, embedded in an approximately 450-dimensional neural state 
space (Fig. 3a). For the illustrations in Fig. 3a and Extended Data Fig. 3a, 
we normalized the distance by the average length of a trial along the 
manifold for each mouse.

Reconstructing neural data from embedded manifolds
To assess the quality of the dimensionality reduction performed with 
MIND, we measured how well the neural data can be reconstructed 
from the d latent variables after embedding the manifold into d dimen-
sions (Extended Data Fig. 4). This provides us with an estimate of the 
minimum number of dimensions required for the reconstruction qual-
ity to saturate. This number should be comparable to the intrinsic 
dimensionality of the manifold, and thus provided us with a separate 
measurement of the dimensionality of the manifolds.

Measuring how well the coordinated activity of neurons is 
predicted by the manifold
To this end, we held out a random trial, fit a manifold to the remain-
ing data, and embedded this manifold into 2–7 dimensions using 
the methods described above (see ‘Manifold inference from neural 
dynamics’). After fitting the manifold to the training data, we first pro-
jected the held-out trial onto the manifold to obtain d coordinates for 
every time point and then reconstructed neural activity from these d 
numbers in the test dataset using LLE13. We then thresholded the LLE 
estimate to capture the thresholding nonlinearity of calcium imag-
ing. The thresholding cut-off was estimated from the training data for 
the best reconstruction. To assess the similarity between the raw data 
and the reconstruction, we then measured the correlation coefficient 
between the reconstructed neural data and the real data. These data 
are a vectorized time-series of the form neurons × time. To perform an 
element-wise comparison, we concatenate all columns into a single vec-
tor and calculate the correlation coefficient. This number was averaged 
across the 10 held-out trials to form the decoding index, and the process 
was repeated for all seven mice (Extended Data Fig. 4a, b). The data 
shown in Fig. 3c are the mean ± s.e.m. for the seven mice. In Fig. 3b, raw 
ΔF/F and reconstructed ΔF/F traces have been smoothed with an 11-bin 
Gaussian filter and thresholded at 4 robust σ. For the reconstructed ΔF/F 
traces, baseline subtraction before smoothing and thresholding was 
accomplished by subtracting the mean of the reconstructed activity 
of each cell from the reconstructed activity of each cell.

Measuring how well the activity of individual neurons is 
predicted by the manifold
This analysis is similar to the one above (see ‘Measuring how well 
the coordinated activity of neurons is predicted by the manifold’) 
but tailored to quantify the predictive power of the manifold on a 
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single-cell level (Extended Data Fig. 4c). To this end, we removed 
one test neuron from all the N cells in the data and used MIND to fit 
a manifold to the remaining N − 1 training neurons46. We then used 
GPR to learn a map g(x) from manifold coordinates x to the activity 
of the test neuron in 80% of the trials. We used a squared exponential 
kernel function to specify the covariance, making these fits smooth 
and differentiable, as expected for a response similar to a firing field. 
In the remaining 20% of trials, we evaluated g(x) and measured the 
correlation coefficient between the predicted and observed data 
of the test neuron. This was repeated four more times for fivefold 
cross-validation and the correlation coefficient over the five folds was 
averaged. This value was calculated for 10 randomly chosen neurons 
from the 25 most active neurons in each mouse and averaged to form 
the decoding index (Extended Data Fig. 4e). In Extended Data Fig. 4d, 
reconstructed ΔF/F traces were baseline-subtracted, smoothed and 
thresholded identically to the procedure mentioned above for Fig. 3b 
(see ‘Measuring how well the coordinated activity of neurons is pre-
dicted by the manifold’).

Comparing MIND with principal component analysis
To compare this nonlinear dimensionality reduction technique with a 
linear method, we also calculated the decoding index (cross-validated 
correlation coefficient between predicted and observed data in a 
held-out trial) using principal component analysis (PCA). To this end, 
we removed a held-out trial from the data, calculated the principal com-
ponents of the remaining data and identified the d principal compo-
nents with greatest coefficients in the training data. We then projected 
the held-out trial onto these d principal components and used the 
obtained coefficients to project back into neural state space. The simi-
larity of the observed held-out trial and the reconstruction from PCA 
was assessed with the correlation coefficient and averaged across 10 
random held-out trials. To reach the same mean cross-validated decod-
ing index as MIND for manifolds embedded in d = 4, 5 and 6 dimensions, 
PCA required d = 29, 40 and 47 principal components, respectively.

Decoding position and evidence from the manifold and neural 
activity
We used GPR to learn a function from latent space or neural activity 
(selecting only the top 10% of cells with highest mutual information 
for position or evidence to limit overfitting) to position and evidence. 
Other nonlinear regression methods such as LLE yielded similar results, 
whereas linear decoding methods generally failed. Figure 3g shows 
the correlation coefficients between the position and evidence values 
in the behavioural session of each mouse predicted from the learned 
regression model (trained on 80% of trials, applied to the test dataset of 
20% of trials, and repeated for five folds) and true position and evidence 
values (averaged over the five folds)—the decoding index. To visual-
ize the position and evidence values (Fig. 3f) as well as the luminance 
(Extended Data Fig. 5b, c) and view angle (Extended Data Fig. 6a), we 
smoothed across the 20 nearest neighbours in latent space.

Similar methods were used in analyses shown in Extended Data 
Fig. 6. To assess whether knowledge of variable X adds to how well 
variable Y predicts the manifold, we decoded manifold dimensions 
with GPR using both X and Y as inputs or X and shuffled Y. To assess 
whether correlated and orthogonal components of X and Y could both 
be decoded, we used PCA on variables X and Y to linearly regress out 
Y from X and decoded both principal component (PC)1 and PC2 from 
the manifold dimensions. To evaluate the accuracy of the decoding 
for binary variables, such as the upcoming choice, the choice in the 
previous trial and whether the previous trial was correct, we aver-
aged the prediction from the GPR across the trial to come up with a 
single value, which was binarized as a single prediction—for example, 
predicting a left or right choice in the trial—and compared it with the 
true value—in this case, whether the mouse actually makes a left or 
right choice.

Hyperalignment procedure
Hyperalignment across two mice was performed as follows. We first 
fit the neural data of mouse A with MIND to obtain a set of T 
d-dimensional latents xA

t. We then perform GPR to learn a map from 
the d-dimensional latents to a behavioural variable eA

t = GPR(xA
t). Next, 

we perform MIND on the data of mouse B. This yields a different set of 
d-dimensional latent vectors xB

t. From these latents, we predict the 
behaviour of mouse B using the GPR trained on mouse A and a 
five-dimensional rotation matrix R with eB

t = GPR(RxB
t). The rotation 

matrix was calculated from a five-dimensional representation of the 

special orthogonal group of degree 5 (SO(5)) so that R g c= ∏ expm( )i i i=1
10 . 

Here, expm() indicates the matrix-exponential of gi, the ten generators 
of SO(5), multiplied with a scalar angular parameter ci. These param-
eters were cross-validated by optimizing on the first half of the data 
and decoding of position and evidence assessed on the second half. 
For each mouse, we decoded position and evidence using the hyper-
aligned five-dimensional manifolds of the six other mice. In Fig. 3i, we 
show the maximum decoding that can be done across the six other 
mice for each mouse, compared with the cross-validated GPR (Fig. 3g) 
for five-dimensional embeddings of the manifold in the same mouse. 
Means were then calculated across the seven mice. We estimated the 
contribution of shared geometry for each mouse in terms of fractional 
variance explained by dividing the r2 of position and evidence decod-
ing obtained with hyperalignment by the r2 of the best decoding that 
could be done with either method.

Task trajectories
To visualize the sequential patterns of the task (Extended Data Fig. 8), 
we first extracted ‘task trajectories’ as smooth spline interpolations of 
the specific trajectory through E × Y space experienced over trials. The 
task trajectories for single trials in a behavioural session are plotted 
as thin lines in Extended Data Fig. 8a together with fits across all left 
or right trials (thick lines). In addition, we also visualized task trajec-
tories as a flow field, for which we binned E × Y space into 10-cm and 
1-tower bins and calculated the trial-averaged gradient in the position 
and evidence directions for every bin. The resulting gradient matrices 
were then individually smoothed by convolution with a Gaussian filter 
with a length of five bins and a σ of one bin. Every other bin was plotted 
as arrows centred on the respective bin and pointing to the average 
direction of the gradient (Extended Data Fig. 8b).

Identification and analysis of sequences
A pair of cells was classified as a doublet if the number of trials in which 
the first cell had a transient event before the second cell was greater 
than 2σ above the mean of the same value obtained from a shuffled 
dataset (100 times) in which neural activity was circularly shifted in each 
trial. Doublets that appeared in fewer than three trials were removed. A 
transient event was defined as any time ΔF/F (smoothed with a Gaussian 
filter with a length of five bins) for that cell was greater than a threshold 
equal to 11× (Ai93 × EMX1) or 5× (GP5.3) the robust σ across the entire 
imaging session. Different thresholds for event detection were used 
for the two mouse strains due to the difference in signal-to-noise ratios. 
Triplets were constructed by simply combining doublets without allow-
ing the same cell to appear twice, that is, a cell cannot be the first cell 
and the third cell in the triplet, and tested using the same significance 
test as was used for doublets.

Even if two place cells had activity that was completely independent, 
we would still expect, by chance, that they fire in the same trials for a 
subset of trials. For example, two place cells with fields at 100 cm and 
200 cm that are each active in 100 random trials in a session with 200 
trials would, on average, show up together in 50 random trials. However, 
if these two cells appeared in all 100 trials together, it would be unlikely 
that their activity was independent. To test whether doublets appeared 



more often than chance, trial IDs of each cell were independently shuf-
fled, so that relationships between cells were disrupted without affect-
ing the neural activity of each cell (Extended Data Fig. 8d), and then we 
searched this shuffled dataset for the doublets again to determine the 
number of instances a doublet would show up if the activity of the two 
cells were independent (n = 100 shuffles).

A doublet was determined to be choice-predictive if the prob-
ability that the mouse was going to turn right in trials in which the 
given doublet occurred was greater than 2σ above or below the mean 
probability of a right turn after shuffling the choices for each trial 
(n = 1,000 shuffles). The same assessment was made to determine 
choice-predictiveness in triplets. Once choice-predictive doublets 
and triplets were identified, we compared the predictiveness of real 
doublet events to events obtained from datasets in which trial IDs were 
shuffled (n = 100 shuffles).

Comparison of sequences and the predictions from the 
manifold
To show that the manifold can predict the presence of sequences, we 
used the manifold to reconstruct the ΔF/F of each cell in each imag-
ing session with LLE (described above in ‘Manifold inference from 
neural dynamics’). We then detected doublet events from this recon-
structed data and compared the trials in which doublet events were 
found against the real data to generate the true-positive rate (TPR) and 
false-positive rate (FPR) for doublet events in each mouse.

More specifically, we constructed a Boolean array Bdata of size 
Ncells × Ncells × Ntrials indicating the presence or absence of a doublet in a 
specific trial. We populated this array with the doublet-finding algo-
rithm described above (see ‘Identification and analysis of sequences’) 
using the observed calcium data. This constitutes ground truth. We 
then reconstructed all neural activity from the latent dimensions of 
the five-dimensional embedding of the manifold. This activity was then 
thresholded at an activity level θ, and we considered only transients 
that exceed this threshold. By definition, these data are the manifold 
prediction. We identified doublet events in these surrogate data with 
the same algorithm to construct a Boolean array Bprediction. Comparing 
this prediction with the ground truth, we can count the number of 
true positives (‘1’ in both the ground truth and the surrogate array), 
false positives (‘1’ in the surrogate array, ‘0’ in the ground truth), false 
negatives (‘0’ in the surrogate array, ‘1’ in the ground truth) and true 
negatives (‘0’ in both the ground truth and the surrogate array). TPR 
was defined as TP/(TP + FN), in which TP is the number of true posi-
tives, and FN is the number of false negatives. FPR was defined as FP/
(FP + TN), in which FP is the number of false positives, and TN is the 
number of true negatives. We then scanned across θ (1–100, in inter-
vals of 5) to construct a receiver operating characteristic (ROC) curve 
(Extended Data Fig. 9d) and calculated the distance d between the 
point (0, 1) in the top left corner of ROC space and any point on the ROC 
curve, d2 = (1 − TPR)2 + FPR2. We chose the threshold θ such that this 
distance was minimal to identify a point of best discriminant capacity. 
The values of TPR and FPR reported in the main text are averages across 
these points for all seven mice.

We next calculated the predictive power of the manifold for the exact 
timing of a doublet. For all doublets, we measured the length of the 
trajectory between the firing of the first cell and the firing of the sec-
ond cell on the manifold in each trial when the doublet was active. This 
length, plotted against the time between the sequentially active cells, 
is shown in Fig. 4e. To test whether the observed correlation of time 
elapsed and distance on the manifold was significantly greater than the 

correlation between time elapsed and any distance on the manifold, 
we compared the observed correlation to the correlation coefficients 
obtained from comparing time elapsed in a trial with manifold distances 
over the same time interval obtained from a different trial. We averaged 
the correlations across 100 random trajectories obtained from other 
trials and over all doublets for each mouse and performed a two-tailed 
Wilcoxon signed-rank test on the average real and random correlation 
values of the mice (n = 7) to test whether real correlation values were 
significantly greater than the random correlation values.

Statistical tests
All statistical tests were performed with MATLAB (2015b, 2018a, 2018b 
and 2020a; Mathworks). Bonferroni correction of P values was per-
formed by multiplying the unadjusted P value by the number of multiple 
comparisons made. In cases in which the corrected P value exceeded 
1.0, we reported the value as 1.0.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The datasets generated in this study are available from the correspond-
ing authors on reasonable request. Source data are provided with this 
paper.

Code availability
The code used for all analyses in this study is available on GitHub 
(https://github.com/BrainCOGS/HPC_manifolds). All other codes are 
available on reasonable request.
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Extended Data Fig. 1 | Characterization of CA1 neural variability in the 
accumulating towers task. a, Each heat map represents one neuron and the 
trial-by-trial activity of that neuron in the towers task for left-choice trials. Each 
row in each heat map is the ΔF/F (normalized within each neuron) of the neuron 
in that trial. b, Same as in a, but for the alternation task. Note that the single-trial 
activity appears more variable in the towers task and more reliable in the 

alternation task, consistent with the results that evidence is also being 
represented by neurons in the towers task. c, Neural activity (ΔF/F normalized 
within each neuron) of cells significantly encoding evidence, sorted by activity 
in half the trials (top) and plotted using the same sorting in the other half of the 
trials (bottom).



Extended Data Fig. 2 | Place fields in evidence-by-position space. a, Each 
heat map shows the mean ΔF/F of a neuron with significant mutual information 
in E × Y space. b, Scatterplot of the mutual information in RE × Y space versus 
E × Y space for each cell with significant information in E × Y space (n = 917 
neurons). RE is randomized evidence. c, Same as in b, but for E × RY space versus 
E × Y space. RY is randomized position. d, In total, 29% of imaged neurons had 
significant mutual information in E × Y space, whereas 16% had significant 
mutual information only for position and 6% had significant mutual 
information only for evidence. e, Of the cells with significant mutual 

information in E × Y space, 89.9% had significantly more information in E × Y 
space than just place or evidence information alone, whereas 9.8% could not be 
differentiated from place cells and 0.3% could not be differentiated from 
evidence cells (Methods). f, The probability of a cell having significant mutual 
information in E × Y space is significantly greater than the joint probability of a 
cell being a place cell and a cell being an evidence cell. Two-tailed Wilcoxon 
signed-rank test, *P = 0.016; n = 7 mice; data are mean ± s.e.m. g, Cells with 
significant mutual information in E × Y space had 1.7 ± 0.03 (mean ± s.e.m.) 
firing fields (n = 917 cells).
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Extended Data Fig. 3 | Dimensionality of an earlier training stage. During 
the training of the towers task, mice proceed through various stages of 
training. In one of these training stages, mice perform a task nearly identical to 
the towers task, except that visual cues only show up on one side of the maze.  
a, The intrinsic dimensionality of the one-side cues task is approximately 4.2 
(4.0–4.5; 95% bootstrapped confidence interval). n = 4 mice; data are 
mean ± 95% bootstrapped confidence intervals. Grey dashed lines illustrate the 
slope expected for a four-dimensional manifold. b, Intrinsic dimensionality of 

the one-side cues task is significantly lower than the dimensionality of the 
towers task. Two-tailed Wilcoxon rank-sum test, *P = 0.042; n = 7 mice (towers 
task) and n = 4 mice (one-side cues task); data are mean ± s.e.m. c, Choice- 
specific place cell sequences in the one-side cues task, similar to Fig. 2a. 
Sequences are divided into left-choice-preferring (top), right-choice- 
preferring (middle) and non-preferring (bottom) cells. Data are split between 
left-choice trials (left) and right-choice trials (right). Cells are shown in the same 
order within each row group. ΔF/F was normalized within each neuron.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Cross-validation methods and results demonstrating 
how neural activity from single neurons is captured by coordinated 
population activity. a, Illustration of the cross-validation method to calculate 
the decoding index in Fig. 3c. Data are split for training (solid colours) and 
testing (shaded colours). With the training data, a map is obtained from ΔF/F to 
latent dimensions and back. This map is then evaluated on the test data. b, To 
assess the performance of the map, we concatenate the neuron × time data in 
the test block and reconstructed test block into two vectors and calculate the 
correlation coefficient from the elementwise pairwise comparison of the 
vectors. The correlation coefficient was averaged across 10 individually held-
out trials to yield the decoding index. c, Illustration of a similar analysis in which 
the activity of a single cell is decoded from a manifold fit to the rest of the 
neural population. One neuron (red) is removed before using MIND to obtain a 
set of latents. Next, in the training data (solid green), a map is calculated from 

the manifold to the activity of the held-out neuron. The map is then used to 
predict the test data (shaded green). The correlation coefficient is calculated 
as in b and averaged over five folds across 10 individually held-out neurons as 
the decoding index. d, Example of neural activity from 40 individually 
reconstructed neurons, in which the activity of each neuron was decoded from 
the five-dimensional manifold fit to the other cells following procedures in c 
(comparable to Fig. 3b, for which the method in a and b was used). ΔF/F is 
normalized to the maximum ΔF/F in the window shown. e, Cross-validated 
correlation coefficients between the activity of individual neurons in the real 
and reconstructed data, in which the reconstruction was accomplished with d-
dimensional embeddings of the neural manifold. The decoding index is the 
correlation coefficient between the predicted and real ΔF/F of the held-out 
ROIs. n = 7 mice; data are mean ± s.e.m.



Extended Data Fig. 5 | Task manifold and neural manifold encode different 
variables. a, The visual space of the accumulating towers task across a 
representative session. Top, the mean luminance of the virtual-reality visual 
field as a function of position in the T-maze. Bottom, four example frames. Note 
the high variability of luminance during the cue period, where bright towers are 
randomly presented on the left and right walls. b, Performing dimensionality 
reduction on the time series of the pixel values in the raw video stream using 

MIND reveals a low-dimensional manifold, reflecting the visual sensory 
structure of the accumulating towers task. Plotting luminance (top) and 
evidence (bottom) on the manifold reveals that luminance is represented as a 
smooth gradient, whereas evidence requires memory and is thus absent on the 
task manifold. c, Same as in b, but showing the neural manifold obtained from 
the mouse that ran the session (Fig. 3f). Note the absence of a luminance 
representation, but the emergence of evidence.
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Extended Data Fig. 6 | Decoding other variables from the neural manifold. 
a, Similar to Fig. 3f, the view angle is plotted as colour on the three-dimensional 
embedding of the manifold. b, The five latent variables of the neural manifold 
embedded in a five-dimensional Euclidean space are better predicted by GPR 
from view angle and evidence values than from view angle and shuffled 
evidence values. Two-tailed Wilcoxon signed-rank test, *P = 0.016; n = 7 mice; 
data are mean ± s.e.m. Decoding index is the correlation coefficient between 
the predicted manifold values and true manifold values, averaged over the five 
dimensions of the manifold. c, Same as in b, but for decoding manifold values 
using position and velocity. The addition of velocity to position information 
significantly improves the decoding of manifold values. Two-tailed Wilcoxon 
signed-rank test, *P = 0.016; n = 7 mice; data are mean ± s.e.m. d, Same as in b, 
but for decoding using position and time. The addition of time information 
does not significantly increase how well manifold values are decoded. 
Two-tailed Wilcoxon signed-rank test, P = 0.30 (ns, not significant); n = 7 mice; 
data are mean ± s.e.m. e, We used PCA to separate the correlated and 
orthogonal dimensions between evidence and view angle and decoded both 
PC1 (correlated) and PC2 (orthogonal) from the five-dimensional embedding 

of the manifold. n = 7 mice; data are mean ± s.e.m. The decoding index is the 
correlation coefficient between the predicted and true principal component 
values. f, The view angle is better decoded from the neural manifold 
(five-dimensional embedding) in the towers task (‘Tow’), when evidence is also 
present, than in the alternation task (‘Alt’) when evidence is not present. 
Two-tailed Wilcoxon rank-sum test, P = 0.07; n = 7 mice (towers task) and n = 7 
mice (alternation task); data are mean ± s.e.m. The decoding index is the 
correlation coefficient between the predicted and true view angle values.  
g, Average view angle trajectories, separated between left- and right-choice 
trials, for the mice in the towers task (n = 7 mice; blue, thin lines) and the 
alternation task (n = 7 mice; red, thin lines). Thick lines represent averages 
across mice. h, Average view angle values in the towers task (n = 7 mice; blue, 
thin lines) and the alternation task (n = 7 mice; red, thin lines) over all trials. 
Thick lines and shaded area are mean ± 95% bootstrapped confidence interval. 
i, Accuracy in predicting the upcoming choice (left), the choice of the mouse in 
the previous trial (centre) and whether the previous trial was rewarded (right) 
from d-dimensional embeddings of the neural manifold. n = 7 mice; data are 
mean ± s.e.m.



Extended Data Fig. 7 | Examples of sequences in CA1 neural activity.  
a, Schematic to describe how doublets were defined. Orange and green are 
calcium traces of the cells under consideration. Grey is the calcium trace of a 
third cell. b, Twenty-five examples of doublets in a single session from one 
mouse. Each panel shows traces for trials in which the doublet was present. 

Orange traces are the neural activity from the first cell in the doublet; green 
traces are the neural activity from the second cell in the doublet. Heat maps 
represent the normalized neural activity of each cell across all trials in the 
session.
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Extended Data Fig. 8 | Neural activity generated by trajectories through 
the task. a, Trajectories through evidence and position in one session of the 
task. Each thin line represents a fit with a cubic spline to a single trial; thick lines 
represent fits over all trials in which the mouse was supposed to turn left or 
right. b, The average change in position and evidence over time across trials in a 
single session for a set of representative states in evidence and position space. 

c, Conceptual diagram showing four trajectories through the neural manifold 
in right-choice trials. Two different doublets are activated because the 
trajectories pass through their firing fields. d, Shuffling trial IDs within 
right-choice trials will disrupt doublet activity while maintaining trial-averaged 
place and choice preferences of each cell.



Extended Data Fig. 9 | Choice-predictive sequences in CA1 neural activity. 
a, Distribution of the values in Fig. 4b. b, Distribution of the values in Fig. 4c.  
c, Distribution of the values in Fig. 4f. d, ROC curves for sequential activity 
predicted from the five-dimensional embedding of the manifold compared to 
sequential activity in real data. n = 7 mice. e, Similar to a, but for triplets. Inset 
shows that triplets are significantly more likely to appear in the real data than  
in the shuffled dataset in which trial IDs were shuffled. Two-tailed paired 
Student’s t-test, real versus shuffled data, ****P < 0.0001; n = 34,737 triplets.  
f, Similar to c, but for triplets, showing that left- and right-choice-predictive 
triplets from real data are more predictive than triplets obtained from the 
shuffled dataset in which trial IDs were shuffled. Left inset, left-predictive, 
n = 1,135 triplets, two-tailed paired Student’s t-test, real versus shuffled data, 
****P < 0.0001; right inset, right-predictive, n = 1,755 triplets, two-tailed paired 
Student’s t-test, real versus shuffled data, ****P < 0.0001. g, Left-choice- 
predictive triplets are significantly more predictive than instances in which the 

first two cells in the triplet fire, but the third does not, or when the third cell 
fires alone. n = 1,135 triplets; two-tailed paired Student’s t-tests, Bonferroni 
corrected; 1 → 2 → 3 versus 1 → 2 → not 3, ****P < 0.0001; 1 → 2 → 3 versus 
not 1 → not 2 → 3, ****P < 0.0001; 1 → 2 → not 3 versus not 1→ not 2 → 3, P = 0.78.  
h, Notably, for left-choice-predictive triplets, in trials in which cells 1 and 2 fire, 
but cell 3 does not, significantly more trials end with the mouse turning right 
than the same instances in the shuffled dataset. n = 1,135 triplets, two-tailed 
paired Student’s t-test, real versus shuffled data, ****P < 0.0001. i, Same as in g, 
but for right-choice-predictive triplets. n = 1,755 triplets; two-tailed paired 
Student’s t-tests, Bonferroni corrected; 1 → 2 → 3 versus 1 → 2 → not 3, 
****P < 0.0001; 1 → 2 → 3 versus not 1 → not 2 → 3, ****P < 0.0001; 1 → 2 → not 3 
versus not 1 → not 2 → 3, P = 1.0. j, Same as in h, but for right-choice-predictive 
triplets. n = 1,755 triplets; two-tailed paired Student’s t-test, real versus shuffled 
data, ****P < 0.0001. For box plots, boundaries: 25–75th percentiles; midline, 
median; whiskers, minimum–maximum.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Data collection Imaging data was collected using ScanImage 2015. Behavioral data was collected using Matlab code (Matlab 2015b, Mathworks Inc) 
based on the ViRMEn package (https://pni.princeton.edu/pni-software-tools/virmen-virtual-reality-matlab-engine). The CNMF algorithm 
was used as published by Pnevmatikakis et al., Neuron 2016 and mildly adapted for manual post-hoc curation. This process is 
documented in Koay et al., eLife 2020. MIND is made publicly available, together with all code to reproduce our analyses in the following 
Github repository: https://github.com/BrainCOGS/HPC_manifolds. ViRMen was used as published by Aronov et al., Neuron 2014, 
together with a custom wrapper that allowed for communication with more recent hardware. This is documented in Pinto*, Koay* et al., 
Frontiers 2018 and publicly available in https://github.com/sakoay/AccumTowersTools. For brevity, refer to these papers for details.

Data analysis Analyses were done using custom Matlab code (Matlab 2018a, Matlab 2018b, Matlab 2020a, Mathworks Inc).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The datasets from this study are available from the corresponding author on reasonable request.
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Sample size Sample sizes were chosen to allow for sufficient statistical power for our experimental procedures, while reducing the number of animals to 
minimize pain and distress. The number of animals we used is typical for a study of this type. As further confirmation, statistical tests were 
used in all analyses to demonstrate that the sample sizes used had sufficient statistical power.

Data exclusions Only neurons with at least one calcium transient are able to be identified by constrained non-negative matrix factorization (CNMF). Therefore, 
cells in the hippocampus that were silent for the entire imaging session were not included. 

Replication We trained a total of 15 animals on three behavioral tasks which we analyzed across animals (n=7 accumulating towers task, n=7 across two 
types of alternation tasks, n=4 one-side cues task). Some animals were used for multiple tasks, i.e. the one-side cues task was a training stage 
in the shaping procedure for the accumulating towers task. Statistical tests were used for all analyses to ensure that the findings were 
significant and unlikely to occur by chance on standard significance levels, as indicated in the figures (* for p<0.05, ** for p<0.01, *** for 
p<0.001, and **** for p<0.0001).

Randomization There was only one experimental group, so no randomization was needed.

Blinding There was only one group, so no group allocation blinding was needed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Clinical data

Methods
n/a Involved in the study

ChIP-seq
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MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Male and female mice aged 2 - 18 months expressing GCaMP6f were used in this study. n=5 triple transgenic crosses expressing 
GCaMP6f under the CaMK11α promoter from Ai93-D;CaMKIIα-tTA [IgS7tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-tTA)1Mmay/J, 
Jackson Laboratories, stock# 024108] and Emx1-IRES-Cre [B6.129S2-Emx1tm1(cre)Krj/J, Jackson Laboratories, stock# 005628] 
and n=10 Thy1-GCaMP6f [C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J, Jackson Laboratories, stock# 028280]. Animals were housed 
in reverse light cycle conditions (light cycle: 8PM - 8AM), temperature was 70±2°F, and humidity was 50±10%.

Wild animals No wild animals were used.

Field-collected samples No field-collected samples were used.

Ethics oversight All procedures performed in this study were approved by the Institutional Animal Care and Use Committee at Princeton 
University and were performed in accordance with the Guide for the Care and Use of Laboratory Animals (National Research 
Council, 2011). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Geometry of abstract learned knowledge in the hippocampus
	Evidence accumulation in virtual reality
	Joint encoding of position and evidence
	Geometric representation by a neural manifold
	Sequential neural activity encodes behaviour
	Discussion
	Online content
	Fig. 1 Imaging of CA1 neural activity in mice performing the accumulating towers task.
	Fig. 2 CA1 neurons jointly encode the position of the mice and accumulated evidence in an evidence-accumulation task.
	Fig. 3 Geometric representation of task variables on low-dimensional neural manifolds.
	Fig. 4 Sequential activity of CA1 neurons in single trials is predictive of behaviour and explained by the manifold.
	Extended Data Fig. 1 Characterization of CA1 neural variability in the accumulating towers task.
	Extended Data Fig. 2 Place fields in evidence-by-position space.
	Extended Data Fig. 3 Dimensionality of an earlier training stage.
	Extended Data Fig. 4 Cross-validation methods and results demonstrating how neural activity from single neurons is captured by coordinated population activity.
	Extended Data Fig. 5 Task manifold and neural manifold encode different variables.
	Extended Data Fig. 6 Decoding other variables from the neural manifold.
	Extended Data Fig. 7 Examples of sequences in CA1 neural activity.
	Extended Data Fig. 8 Neural activity generated by trajectories through the task.
	Extended Data Fig. 9 Choice-predictive sequences in CA1 neural activity.




