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Motivation

Are LTE models good enough?
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Motivation

» Elemental abundances (etc.) are inferred via comparison to model spectra

* Are LTE models good enough? Can we uncover
when using more realistic (non-LTE) model spectra?
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Motivation

» Elemental abundances (etc.) are inferred via comparison to model spectra

* Are LTE models good enough? Can we uncover interesting astrophysics
when using more realistic (non-LTE) model spectra?

* Four examples

1. S I magnetic field diagnostic in o Pegasi (Am star)

T

2. C/O planet signature (FG dwarfs)

3. [Mg/Fe] accretion signature (FG dwarfs) 3D non-LTE
(convective envelopes)
4. [C/O] Pop lll signature (FG dwarts) /
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Normalized spectra

1. S | magnetic field diagnostic in o Peg.
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2. C/0O planet signature
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2. C/0O planet signature
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2. C/0O planet signature
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2. C/0O planet signature
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3. [Mg/Fe] accretion signature

Early days of the Milky Way, artist impression [Gabriel Pérez Diaz, SMM, |IAC]



3. [Mg/Fe] accretion signature

* Mg abundances for stars in the
Galaxy

» LTE analysis: high-alpha “in-
situ” halo and low-alpha
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3. [Mg/Fe] accretion signature
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3. [Mg/Fe] accretion signature

Mg abundances for stars in the
Galaxy
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4. [C/O] Pop lll signature

e C and O abundances for stars
in the Galaxy

» LTE analysis: upturn in [C/O] at
low metallicity; possible
signature of yields of
Population Il stars (Akerman+

2004)
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e C and O abundances for stars
in the Galaxy

» LTE analysis: upturn in [C/O] at
low metallicity; possible
signature of yields of
Population Il stars (Akerman+

2004)

* Non-LTE-analysis: plateau at
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e C and O abundances for stars
in the Galaxy

* LTE analysis: upturn in [C/O] at
low metallicity; possible
signature of yields of
Population Il stars (Akerman+

2004)

* Non-LTE-analysis: plateau at
low-metallicity (no signature)
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Theory and methods

When is LTE valid? How do we calculate non-LTE spectra in practice?
[See Rutten (2003) lecture notes, Hubeny & Mihalas (2015) textbook, Lind & Amarsi (2024) review]



Populations in LTE

» Absorption line strengths depend on
number of absorbers and emitters in
the correct energy states




Populations in LTE

» Absorption line strengths depend on
number of absorbers and emitters in
the correct energy states

* Local thermodynamic equilibrium (LTE):

trivially known via 486nm
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Populations in non-LTE

* More general solution: solve the rate
equations to find statistical equilibrium

C are collisional rates, depend on local
Maxwellian-averaged cross-sections

R takes into account non-local photons

- e.g. forolgound-bound absorption,

U

R, = J' B, J @ (1/ — 1/0) dv, mean radiation
0

field J, determined via radiative transfer
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Interpretation

Radiation in atmosphere is non-Planckian

- At a particular layer in the atmosphere, locally-generated photons are scattering out
and escaping (TE assumes all emitted photons are immediately reabsorbed) —
photon losses

- Photons escaping from other (mostly deeper) layers scatter into the layer you are
trying to model — photon pumping, overexcitation/
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For which stars do we typically expect

Inte rp retatiOn stronger non-LTE effects?

High or low log g?
High or low T .7

» Radiation in atmosphere is non-Planckian

- At a particular layer in the atmosphere, locally-generated photons are scattering out
and escaping (TE assumes all emitted photons are immediately reabsorbed) —
photon losses

- Photons escaping from other (mostly deeper) layers scatter into the layer you are
trying to model — photon pumping, overexcitation/overionisation

 Particles have LTE (Maxwellian) velocities (Hubeny and Mihalas chapter 4)

» Competition between collisions (LTE) and (escaping) radiation (non-LTE)



Beware there are exceptions, and
cancellation effects, depending on the

Inte I‘p I‘etatiOn species and spectral line
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Non-LTE codes

« Commonly used codes include MULTI, DETAIL, TLUSTY, CLOUDY,...

(Examples in this presentation use BALDER, an offshoot of Multi3D, with
links to MULT]I)

* One uncertainty is the equation of state and of the
non-LTE code

- Background opacities block the radiation from the species of interest, generally (but
not always) reducing departures from LTE

- Good to check when was the last time this was updated



® Energies, statistical weights, partition functions

The model atom

® Radiation: transition rates (Einstein A's),
photoionisation cross-sections

® Collisions: (low-energy) collision cross-sections

* Non-LTE solution is only as good as the
input atomic (and ionic) data

» This compilation of data is called the
“model atom”

 Significant effort to construct and test
model atoms

e Relevant atomic/molecular data are
often missing/inaccurate
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Typical non-LTE effects

Are non-LTE spectral lines stronger or weaker than LTE spectral lines?



S l infrared triplet in detail
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S l infrared triplet in detail
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Departure coefficients » =

NNLTE

20T LR e -

* Line source function goes as 1.8~

ratio of upper and lower level b’s, .| High up = strong

b, /b, | f“\‘non-LTE effects
. (why?)

- Lower source function = stronger -
“ne 1.2 —

 Line opacity goes as b of the

ower level, b T

- Higher opacity = stronger line 0.6 -

Y
— Y
LN
10 Frrrrre Mg
- .
— LN
1N

Deep atmosphere-

[Kochukhov et al. 2024]



S 11045.545 nm S11045.676 nm S11045.941 nm

. ANLTE 7\ 7N
Departure coefficients » = ——= V d ]

1045.5 1045.6  1045.6 45.7 1045.9 1046.0
A(m A A(m
2 O |||||||||||||||||| | |||||||||||||||||| | ||||||||| | ||||||||| | |||||||||
n

If the departure coefficientsasa -

* Line source function goes as 1.8 | HHEIE]
ratio of upper and lower level b’s, 1 6;~ function of depth are identical for a_ll
b b °F. three S| components, why are their -
u' =l \ non-LTE effects different? -
- Lower source function = stronger o
line 1.2 . B

—i
o

 Line opacity goes as b of the

ower level, b, e

- Higher opacity = stronger line 0.6

[Kochukhov et al. 2024]



o o I{/
Departure coefficients »h = —=
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Departure coefficients » =

* Line source function goes as
ratio of upper and lower level b’s,

b /b,

- Lower source function = stronger
line

 Line opacity goes as b of the
lower level, b,

- Higher opacity = stronger line
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Departure coefficients » =

* Line source function goes as
ratio of upper and lower level b’s,

b /b,

- Lower source function = stronger
line

 Line opacity goes as b of the
lower level, b,

- Higher opacity = stronger line
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[Kochukhov et al. 2024]
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Departure coefficients »h = —=
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Departure coefficients » =

Switching off photoionisation... | I
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[Kochukhov et al. 2024]



Norm. flux

1.0

0.8

0.6

0.4

A(S) from S | lines will be
underestimated in LTE

Overionisation of
neutral sulphur
(minority species)
weakens lines

LTE

— Non-LTE
—— No S | photoion. _

1045.5 1045.6

1045.7 1045.8
Wavelength (air) / nm

1045.9

1046.0

[Kochukhov et al. 2024]



o o I{/
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"N TE

Photon losses In the

triplet lines

(Photons emitted by the line
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reabsorbed; stronger lines)

Line source function goes as
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b /b,

- Lower source function = stronger
line
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lower level, b,

- Higher opacity = stronger line
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Departure coefficients » =

* Line source function goes as

ratio of upper and lower level b’s,

b /b,

- Lower source function = stronger
line

 Line opacity goes as b of the
lower level, b,

- Higher opacity = stronger line
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"N TE

Photon losses In the

triplet lines

(Photons emitted by the line
escape instead of being

reabsorbed; stronger lines)

What happens if the
triplet lines are -
switched off?

[Kochukhov et al. 2024]



Departure coefficients » =

Line source function goes as
ratio of upper and lower level b’s,

b /b,

- Lower source function = stronger

 Line opacity goes as b of the

line

lower level, b,

Higher opacity = stronger line
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(Photons emitted by the line
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reabsorbed; stronger lines)
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[Kochukhov et al. 2024]
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Applying non-LTE corrections

How can we carry out non-LTE spectral analyses in practice?



Correcting LTE results

* Non-LTE calculations are more expensive than LTE ones
- For a whole spectrum: 10-50 times more computationally expensive
- For a single line: 1000-5000 times more computationally expensive

- Excludes code overheads + the human cost of constructing the model atom(s)

* Instead, users can correct LTE results with non-LTE data pre-computed by

1. Using abundance corrections

2. Using departure coefficients



1. Abundance corrections

S 11045.941 nm

» Given spectral line, model atmosphere, LLp |
calculates spectral lines in non-LTE and in LTE for ol
different abundances |
0.9F
» For a given LTE abundance A; 1, finds non- |
LTE abundance Ay, g such that non-LTE and LTE 0.8 |
equivalent widths agree 1 TE needs 0.2 dex
"1 higher AS)
. creates a grid of abundance corrections L et A L
A= A _A 1045.9 1046.0
NLTE — “ILTE 7 (nm)
A=-0.2

 User interpolates A = A(T,, log g, [Fe/H], A; tg, & yic )

[Kochukhov et al. 2024]



2. Departure coefficients

» Given model atmosphere, abundance, 2.0 [T T :
calculates departure coefficients 18- -

1.6 -

» User takes departure coefficients N :
14— % -

b — b(Teff’ lOg g, [F@/H], ANLTE’ émlc) and I‘eads - 1 2:_ \\‘ _:
them into an LTE code [ S -
1.0 :_ ............................ f.\.;.; .................................. '/\"" ..... e .-..:

 LTE code corrects line opacity using b, and 08 \/bu/u -
° ° ° ° ° : bU :
line source function using b,/b;, interpolating - —b -

if necessary 54 s P T T

* User gets non-LTE spectra with LTE cost

[Kochukhov et al. 2024]



2. Departure coefficients

» Many LTE codes support reading and 2.0 7T :
interpolating departure coefficients e.g. 18f -

- PySME (Wehrhahn+ 2023; ) 16L _
14— % -

- Turbospectrum (Gerberg+ 2023) oo N :

- Synmast (Kochukhov+ 2010) L0 e N
0.8 \/bu/b. -

- (Various others) : B
0.6~ | |

5 L LT > Ty o >

» Straightforward to implement into your
favourite LTE code

[Kochukhov et al. 2024]



Conclusion



Conclusion

» Taking non-LTE effects into account can reveal os—

interesting new astrophysics

C/O

0.2

3D NLTE
- Thin—disk stars

0 Without planets

e With planets

-0.4

-0.2

~0.0 0.2 0.4 0.6
[Fe/H]

[Amarsi, Nissen and Skuladottir 2019]
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Conclusion

« Taking non-LTE effects into account can reveal
Interesting

« LTE is valid in the limit of large collisions; but
anticipate large non-LTE effects in hot stars

* Non-LTE
effects, depending on the stellar parameters,
abundances, species, and spectral line

Normalized spectra

1.1}

S11045.545 nm

1045.5 1045.6
A (nm)

] 1]
{ 1.0/
1 09}
1 o8}

1 o7}

ST11045.676 nm

1045.6 1045.7

[Kochukhov et al. 2024]



Conclusion

« Taking non-LTE effects into account can reveal
interesting new astrophysics

1.1

« LTE is valid in the limit of large collisions; but
anticipate large non-LTE effects in hot stars

Normalized spectra

* Non-LTE line strengthening and line weakening
eftects, depending on the stellar parameters,
abundances, species, and spectral line

* Interpolate pre-computed grids of departure
coefficients to get non-LTE spectra on the fly

Non-LTE with

BALDER

Synthesis with SYNMAST

S11045.545 nm

U N ] 1.1}

ST11045.676 nm

{ 1.0/

1 09}
1 o8}

1 o7}

1045.5 1045.6 1045.6 1045.7

A (nm)

[Kochukhov et al. 2024]



